THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Усилитель на транзисторах, несмотря на свою уже долгую историю, остается излюбленным предметом исследования как начинающих, так и маститых радиолюбителей. И это понятно. Он является непременной составной частью самых массовых и усилителей низкой (звуковой) частоты. Мы рассмотрим, как строятся простейшие усилители на транзисторах.

Частотная характеристика усилителя

В любом теле- или радиоприемнике, в каждом музыкальном центре или усилителе звука можно найти транзисторные усилители звука (низкой частоты - НЧ). Разница между звуковыми транзисторными усилителями и другими видами заключается в их частотных характеристиках.

Звуковой усилитель на транзисторах имеет равномерную частотную характеристику в полосе частот от 15 Гц до 20 кГц. Это означает, что все входные сигналы с частотой внутри этого диапазона усилитель преобразует (усиливает) примерно одинаково. На рисунке ниже в координатах «коэффициент усиления усилителя Ку - частота входного сигнала» показана идеальная кривая частотной характеристики для звукового усилителя.

Эта кривая практически плоская с 15 Гц по 20 кГц. Это означает, применять такой усилитель следует именно для входных сигналов с частотами между 15 Гц и 20 кГц. Для входных сигналов с частотами выше 20 кГц или ниже 15 Гц эффективность и качество его работы быстро уменьшаются.

Вид частотной характеристики усилителя определяется электрорадиоэлементами (ЭРЭ) его схемы, и прежде всего самими транзисторами. Звуковой усилитель на транзисторах обычно собран на так называемых низко- и среднечастотных транзисторах с суммарной полосой пропускания входных сигналов от десятков и сотен Гц до 30 кГц.

Класс работы усилителя

Как известно, в зависимости от степени непрерывности протекания тока на протяжении его периода через транзисторный усилительный каскад (усилитель) различают следующие классы его работы: "А", "B", "AB", "C", "D".

В классе работы ток "А" через каскад протекает на протяжении 100 % периода входного сигнала. Работу каскада в этом классе иллюстрирует следующий рисунок.

В классе работы усилительного каскада "AB" ток через него протекает более чем 50 %, но менее чем 100 % периода входного сигнала (см. рисунок ниже).

В классе работы каскада "В" ток через него протекает ровно 50 % периода входного сигнала, как это иллюстрирует рисунок.

И наконец в классе работы каскада "C" ток через него протекает менее чем 50 % периода входного сигнала.

НЧ-усилитель на транзисторах: искажения в основных классах работы

В рабочей области транзисторный усилитель класса "А" обладает малым уровнем нелинейных искажений. Но если сигнал имеет импульсные выбросы по напряжению, приводящие к насыщению транзисторов, то вокруг каждой «штатной» гармоники выходного сигнала появляются высшие гармоники (вплоть до 11-й). Это вызывает феномен так называемого транзисторного, или металлического, звука.

Если НЧ-усилители мощности на транзисторах имеют нестабилизированное питание, то их выходные сигналы модулируются по амплитуде вблизи частоты сети. Это ведет к жёсткости звука на левом краю частотной характеристики. Различные же способы стабилизации напряжения делают конструкцию усилителя более сложной.

Типовой КПД однотактного усилителя класса А не превышает 20 % из-за постоянно открытого транзистора и непрерывного протекания постоянной составляющей тока. Можно выполнить усилитель класса А двухтактным, КПД несколько повысится, но полуволны сигнала станут более несимметричными. Перевод же каскада из класса работы "А" в класс работы "АВ" повышает вчетверо нелинейные искажения, хотя КПД его схемы при этом повышается.

В усилителях же классов "АВ" и "В" искажения нарастают по мере снижения уровня сигнала. Невольно хочется врубить такой усилитель погромче для полноты ощущений мощи и динамики музыки, но зачастую это мало помогает.

Промежуточные классы работы

У класса работы "А" имеется разновидность - класс "А+". При этом низковольтные входные транзисторы усилителя этого класса работают в классе "А", а высоковольтные выходные транзисторы усилителя при превышении их входными сигналами определенного уровня переходят в классы "В" или "АВ". Экономичность таких каскадов лучше, чем в чистом классе "А", а нелинейные искажения меньше (до 0,003 %). Однако звук у них также "металлический" из-за наличия высших гармоник в выходном сигнале.

У усилителей еще одного класса - "АА" степень нелинейных искажений еще ниже - около 0,0005 %, но высшие гармоники также присутствуют.

Возврат к транзисторному усилителю класса "А"?

Сегодня многие специалисты в области качественного звуковоспроизведения ратуют за возврат к ламповым усилителям, поскольку уровень нелинейных искажений и высших гармоник, вносимых ими в выходной сигнал, заведомо ниже, чем у транзисторов. Однако эти достоинства в немалой степени нивелируются необходимостью согласующего трансформатора между высокоомным ламповым выходным каскадом и низкоомными звуковыми колонками. Впрочем, с трансформаторным выходом может быть сделан и простой усилитель на транзисторах, что будет показано ниже.

Существует и точка зрения, что предельное качество звучания может обеспечить только гибридный лампово-транзисторный усилитель, все каскады которого являются однотактными, не охвачены и работают в классе "А". То есть такой повторитель мощности представляет собой усилитель на одном транзисторе. Схема его может иметь предельно достижимый КПД (в классе "А") не более 50 %. Но ни мощность, ни КПД усилителя не являются показателями качества звуковоспроизведения. При этом особое значение приобретают качество и линейность характеристик всех ЭРЭ в схеме.

Поскольку однотактные схемы получают такую перспективу, мы рассмотрим ниже их возможные варианты.

Однотактный усилитель на одном транзисторе

Схема его, выполненная с общим эмиттером и R-C-связями по входному и выходному сигналам для работы в классе "А", приведена на рисунке ниже.

На ней показан транзистор Q1 структуры n-p-n. Его коллектор через токоограничивающий резистор R3 присоединен к положительному выводу +Vcc, а эмиттер - к -Vcc. Усилитель на транзисторе структуры p-n-p будет иметь такую же схему, но выводы источника питания поменяются местами.

C1 - разделительный конденсатор, посредством которого источник переменного входного сигнала отделяется от источника постоянного напряжения Vcc. При этом С1 не препятствует прохождению переменного входного тока через переход "база - эмиттер транзистора Q1". Резисторы R1 и R2 совместно с сопротивлением перехода «Э - Б» образуют Vcc для выбора рабочей точки транзистора Q1 в статическом режиме. Типичной для этой схемы является величина R2 = 1 кОм, а положение рабочей точки - Vcc/2. R3 является нагрузочным резистором коллекторной цепи и служит для создания на коллекторе переменного напряжения выходного сигнала.

Предположим, что Vcc = 20 В, R2 = 1 кОм, а коэффициент усиления по току h = 150. Напряжение на эмиттере выбираем Ve = 9 В, а падение напряжения на переходе «Э - Б» принимаем равным Vbe = 0,7 В. Эта величина соответствует так называемому кремниевому транзистору. Если бы мы рассматривали усилитель на германиевых транзисторах, то падение напряжения на открытом переходе «Э - Б» было бы равно Vbe = 0,3 В.

Ток эмиттера, примерно равный току коллектора

Ie = 9 B/1 кОм = 9 мА ≈ Ic.

Ток базы Ib = Ic/h = 9 мА/150 = 60 мкА.

Падение напряжения на резисторе R1

V(R1) = Vcc - Vb = Vcc - (Vbe + Ve) = 20 В - 9,7 В = 10,3 В,

R1 = V(R1)/Ib = 10,3 В/60 мкА = 172 кОм.

С2 нужен для создания цепи прохождения переменной составляющей тока эмиттера (фактически тока коллектора). Если бы его не было, то резистор R2 сильно ограничивал бы переменную составляющую, так что рассматриваемый усилитель на биполярном транзисторе имел бы низкий коэффициент усиления по току.

В наших расчетах мы принимали, что Ic = Ib h, где Ib - ток базы, втекающий в нее из эмиттера и возникающий при подаче на базу напряжения смещения. Однако через базу всегда (как при наличии смещения, так и без него) протекает еще и ток утечки из коллектора Icb0. Поэтому реальный ток коллектора равен Ic = Ib h + Icb0 h, т.е. ток утечки в схеме с ОЭ усиливается в 150 раз. Если бы мы рассматривали усилитель на германиевых транзисторах, то это обстоятельство нужно было бы учитывать при расчетах. Дело в том, что имеют существенный Icb0 порядка нескольких мкА. У кремниевых же он на три порядка меньше (около нескольких нА), так что в расчетах им обычно пренебрегают.

Однотактный усилитель с МДП-транзистором

Как и любой усилитель на полевых транзисторах, рассматриваемая схема имеет свой аналог среди усилителей на Поэтому рассмотрим аналог предыдущей схемы с общим эмиттером. Она выполнена с общим истоком и R-C-связями по входному и выходному сигналам для работы в классе "А" и приведена на рисунке ниже.

Здесь C1 - такой же разделительный конденсатор, посредством которого источник переменного входного сигнала отделяется от источника постоянного напряжения Vdd. Как известно, любой усилитель на полевых транзисторах должен иметь потенциал затвора своих МДП-транзисторов ниже потенциалов их истоков. В данной схеме затвор заземлен резистором R1, имеющим, как правило, большое сопротивление (от 100 кОм до 1 Мом), чтобы он не шунтировал входной сигнал. Ток через R1 практически не проходит, поэтому потенциал затвора при отсутствии входного сигнала равен потенциалу земли. Потенциал же истока выше потенциала земли за счет падения напряжения на резисторе R2. Таким образом, потенциал затвора оказывается ниже потенциала истока, что и нужно для нормальной работы Q1. Конденсатор C2 и резистор R3 имеют такое же назначение, как и в предыдущей схеме. Поскольку эта схема с общим истоком, то входной и выходной сигналы сдвинуты по фазе на 180°.

Усилитель с трансформаторным выходом

Третий одноступенчатый простой усилитель на транзисторах, показанный на рисунке ниже, также выполнен по схеме с общим эмиттером для работы в классе "А", но с низкоомным динамиком он связан через согласующий трансформатор.

Первичная обмотка трансформатора T1 является нагрузкой коллекторной цепи транзистора Q1 и развивает выходной сигнал. T1 передает выходной сигнал на динамик и обеспечивает согласование выходного полного сопротивления транзистора с низким (порядка нескольких Ом) сопротивлением динамика.

Делитель напряжения коллекторного источника питания Vcc, собранный на резисторах R1 и R3, обеспечивает выбор рабочей точки транзистора Q1 (подачу напряжения смещения на его базу). Назначение остальных элементов усилителя такое же, как и в предыдущих схемах.

Двухтактный звуковой усилитель

Двухтактный НЧ-усилитель на двух транзисторах расщепляет входной частоты на две противофазные полуволны, каждая из которых усиливается своим собственным транзисторным каскадом. После выполнения такого усиления полуволны объединяются в целостный гармонический сигнал, который и передается на акустическую систему. Подобное преобразование НЧ-сигнала (расщепление и повторное слияние), естественно, вызывает в нем необратимые искажения, обусловленные различием частотных и динамических свойств двух транзисторов схемы. Эти искажения снижают качество звука на выходе усилителя.

Двухтактные усилители, работающие в классе "А", недостаточно хорошо воспроизводят сложные звуковые сигналы, так как в их плечах непрерывно протекает постоянный ток повышенной величины. Это приводит к несимметрии полуволн сигнала, фазовым искажениям и в конечном итоге к потере разборчивости звука. Нагреваясь, два мощных транзистора увеличивают вдвое искажения сигнала в области низких и инфранизких частот. Но все же основным достоинством двухтактной схемы является ее приемлемый КПД и повышенная выходная мощность.

Двухтактная схема усилителя мощности на транзисторах показана на рисунке.

Это усилитель для работы в классе "А", но может быть использован и класс "АВ", и даже "В".

Бестрансформаторный транзисторный усилитель мощности

Трансформаторы, несмотря на успехи в их миниатюризации, остаются все же самыми громоздкими, тяжелыми и дорогими ЭРЭ. Поэтому был найден путь устранения трансформатора из двухтактной схемы путем выполнения ее на двух мощных комплементарных транзисторах разных типов (n-p-n и p-n-p). Большинство современных усилителей мощности используют именно этот принцип и предназначены для работы в классе "В". Схема такого усилителя мощности показана на рисунке ниже.

Оба ее транзистора включены по схеме с общим коллектором (эмиттерного повторителя). Поэтому схема передает входное напряжение на выход без усиления. Если входного сигнала нет, то оба транзистора находятся на границе включенного состояния, но при этом они выключены.

Когда гармонический сигнал подан на вход, его положительная полуволна открывает TR1, но переводит p-n-p транзистор TR2 полностью в режим отсечки. Таким образом, только положительная полуволна усиленного тока протекает через нагрузку. Отрицательная полуволна входного сигнала открывает только TR2 и запирает TR1, так что в нагрузку подается отрицательная полуволна усиленного тока. В результате на нагрузке выделяется полный усиленный по мощности (за счет усиления по току) синусоидальный сигнал.

Усилитель на одном транзисторе

Для усвоения вышеизложенного соберем простой усилитель на транзисторах своими руками и разберемся, как он работает.

В качестве нагрузки маломощного транзистора Т типа BC107 включим наушники с сопротивлением 2-3 кОм, напряжение смещения на базу подадим с высокоомного резистора R* величиной 1 МОм, развязывающий электролитический конденсатор C емкостью от 10 мкФ до 100 мкФ включим в базовую цепь Т. Питать схему будем от батареи 4,5 В/0,3 А.

Если резистор R* не подключен, то нет ни тока базы Ib, ни тока коллектора Ic. Если резистор подключен, то напряжение на базе поднимается до 0,7 В и через нее протекает ток Ib = 4 мкА. Коэффициент усиления транзистора по току равен 250, что дает Ic = 250Ib = 1 мА.

Собрав простой усилитель на транзисторах своими руками, можем теперь его испытать. Подключите наушники и поставьте палец на точку 1 схемы. Вы услышите шум. Ваше тело воспринимает излучение питающей сети на частоте 50 Гц. Шум, услышанный вами из наушников, и является этим излучением, только усиленным транзистором. Поясним этот процесс подробнее. Напряжение переменного тока с частотой 50 Гц подключено к базе транзистора через конденсатор С. Напряжение на базе теперь равно сумме постоянного напряжения смещения (приблизительно 0,7 В), приходящего с резистора R*, и напряжения переменного тока "от пальца". В результате ток коллектора получает переменную составляющую с частотой 50 Гц. Этот переменный ток используется для сдвига мембраны динамиков вперед-назад с той же частотой, а это означает, что мы сможем услышать тон 50 Гц на выходе.

Слушать уровень шума 50 Гц не очень интересно, поэтому можно подключить к точкам 1 и 2 низкочастотные источника сигнала (CD-плеер или микрофон) и слышать усиленную речь или музыку.

После освоения азов электроники, начинающий радиолюбитель готов паять свои первые электронные конструкции. Усилители мощности звуковой частоты, как правило самые повторяемые конструкции. Схем достаточно много, каждая отличается своими параметрами и конструкцией. В этой статье будут рассмотрены несколько простейших и полностью рабочих схем усилителей, которые успешно могут быть повторены любым радиолюбителем. В статье не использованы сложные термины и расчеты, все максимально упрощено, чтобы не возникло дополнительных вопросов.

Начнем с более мощной схемы.
Итак, первая схема выполнена на известной микросхеме TDA2003. Это монофонический усилитель с выходной мощностью до 7 Ватт на нагрузку 4 Ом. Хочу сказать, что стандартная схема включения этой микросхемы содержит малое количество компонентов, но пару лет назад мною была придумана иная схема на этой микросхеме. В этой схеме количество комплектующих компонентов сведено к минимуму, но усилитель не потерял свои звуковые параметры. После разработки данной схемы, все свои усилители для маломощных колонок стал делать именно на этой схеме.

Схема представленного усилителя имеет широкий диапазон воспроизводимых частот, диапазон питающих напряжений от 4,5 до 18 вольт (типовое 12-14 вольт). Микросхему устанавливают на небольшой теплоотвод, поскольку максимальная мощность достигает до 10 Ватт.

Микросхема способна работать на нагрузку 2 Ом, это значит, что к выходу усилителя можно подключать 2 головки с сопротивлением 4 Ом.
Входной конденсатор можно заменить на любой другой, с емкостью от 0,01 до 4,7 мкФ (желательно от 0,1 до 0,47 мкФ), можно использовать как пленочные, так и керамические конденсаторы. Все остальные компоненты желательно не заменять.

Регулятор громкости от 10 до 47 кОм.
Выходная мощность микросхемы позволяет применять его в маломощных АС для ПК. Очень удобно использовать микросхему для автономных колонок к мобильному телефону и т.п.
Усилитель работает сразу после включения, в дополнительной наладке не нуждается. Советуется минус питания дополнительно подключить к теплоотводу. Все электролитические конденсаторы желательно использовать на 25 Вольт.

Вторая схема собрана на маломощных транзисторах, и больше подойдет в качестве усилителя для наушников.

Это наверное самая качественная схема такого рода, звук чистый, чувствуются весь частотный спектр. С хорошими наушниками, такое ощущение, что у вас полноценный сабвуфер.

Усилитель собран всего на 3-х транзисторах обратной проводимости, как самый дешевый вариант, были использованы транзисторы серии КТ315, но их выбор достаточно широк.

Усилитель может работать на низкоомную нагрузку, вплоть до 4-х Ом, что дает возможность, использовать схему для усиления сигнала плеера, радиоприемника и т.п. В качестве источника питания использована батарейка типа крона с напряжением 9 вольт.
В окончательном каскаде тоже применены транзисторы КТ315. Для повышения выходной мощности можно применить транзисторы КТ815, но тогда придется увеличить напряжение питания до 12 вольт. В этом случае мощность усилителя будет достигать до 1 Ватт. Выходной конденсатор может иметь емкость от 220 до 2200 мкФ.
Транзисторы в этой схеме не нагреваются, следовательно, какое-либо охлаждение не нужно. При использовании более мощных выходных транзисторов, возможно, понадобятся небольшие теплоотводы для каждого транзистора.

И наконец - третья схема. Представлен не менее простой, но проверенный вариант строения усилителя. Усилитель способен работать от пониженного напряжения до 5 вольт, при таком случае выходная мощность УМ будет не более 0,5 Вт, а максимальная мощность при питании 12 вольт достигает до 2-х Ватт.

Выходной каскад усилителя построен на отечественной комплементарной паре. Регулируют усилитель подбором резистора R2. Для этого желательно использовать подстроечный регулятор на 1кОм. Медленно вращаем регулятор до тех пор, пока ток покоя выходного каскада не будет 2-5 мА.

Усилитель не обладает высокой входной чувствительностью, поэтому желательно перед входом применить предварительный усилитель.

Немало важную роль в схеме играет диод, он тут для стабилизации режима выходного каскада.
Транзисторы выходного каскада можно заменить на любую комплементарную пару соответствующих параметров, например КТ816/817. Усилитель может питать маломощные автономные колонки с сопротивлением нагрузки 6-8 Ом.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Усилитель на микросхеме TDA2003
Аудио усилитель

TDA2003

1 В блокнот
С1 47 мкФ х 25В 1 В блокнот
С2 Конденсатор 100 нФ 1 Пленочный В блокнот
С3 Электролитический конденсатор 1 мкФ х 25В 1 В блокнот
С5 Электролитический конденсатор 470 мкФ х 16В 1 В блокнот
R1 Резистор

100 Ом

1 В блокнот
R2 Переменный резистор 50 кОм 1 От 10 кОм до 50 кОм В блокнот
Ls1 Динамическая головка 2-4 Ом 1 В блокнот
Усилитель на транзисторах схема №2
VT1-VT3 Биполярный транзистор

КТ315А

3 В блокнот
С1 Электролитический конденсатор 1 мкФ х 16В 1 В блокнот
С2, С3 Электролитический конденсатор 1000 мкФ х 16В 2 В блокнот
R1, R2 Резистор

100 кОм

2 В блокнот
R3 Резистор

47 кОм

1 В блокнот
R4 Резистор

1 кОм

1 В блокнот
R5 Переменный резистор 50 кОм 1 В блокнот
R6 Резистор

3 кОм

1 В блокнот
Динамическая головка 2-4 Ом 1 В блокнот
Усилитель на транзисторах схема №3
VT2 Биполярный транзистор

КТ315А

1 В блокнот
VT3 Биполярный транзистор

КТ361А

1 В блокнот
VT4 Биполярный транзистор

КТ815А

1 В блокнот
VT5 Биполярный транзистор

КТ816А

1 В блокнот
VD1 Диод

Д18

1 Или любой маломощный В блокнот
С1, С2, С5 Электролитический конденсатор 10 мкФ х 16В 3

Хочу представить конструкцию простого, но мощного усилителя низкой частоты, выполненного на современных недорогих транзисторах. Основные достоинства этого усилителя - простота сборки, доступные и дешевые радиодетали, также готовый усилитель в наладке не нуждается и работает сразу. Усилитель развивает очень высокую мощность по сравнению с аналогичными схемами. Из электрических параметров хочется отметить очень высокую линейность в рабочем диапазоне частот от 20Гц до 20кГц. Правда без недостатков тоже не обошлось. У данной схемы есть повышенный уровень шумов при большой громкости, но если учесть простоту и доступность, то все же собрать усилитель стоит, особенно советую автолюбителям для мощного сабвуфера, поскольку мощность такой схемы вполне позволяет раскачать импортные головки большой мощности. Из схемы видно, что проще некуда. В схеме использованы всего 5 транзисторов и несколько дополнительных радиодеталей.

Для уменьшения уровня шума усилителя, на вход нужно будет поставить переменный резистор, сопротивлением от 20 до 100 кОм, им также регулируют громкость. В таком случае, при малой громкости шума практически не будет, а при большой громкости шум почти не слышим, а если усилитель работает с нч фильтром на входе (под сабвуфер), то никаких шумов не будет вообще.

Усилитель способен выдать окало 100 Ватт на нагрузку 8 Ом! если же используется головка с сопротивлением 4 ом, то мощность возрастает до 150 ватт! Параметры УМЗЧ:

Коэффициент усиления по напряжению......................................................20

Напряжение питания Uпит...............................................................................+-15…+-50В
Номинальная мощность P при Uпит = +-30В на 4Ом...........................................100Вт
Максимальная мощность Pmax Uпит=+-45В на 4Ом..........................................150Вт
Чувствительность по входу Uвх.......................................................................1В
Суммарный коэф-т всех видов искажений при P=60Вт 4Ома, Kd........................0,005%
Ток покоя усилителя Ixx..................................................................................20-25мА
Ток покоя выходного каскада..........................................................................0мА
Полоса воспроизводимых частот по уровню –3дБ, Гц,............................5-100 000

Параметры достаточно хороши, единственная преграда для использования схемы в качестве автомобильного усилителя - это повышенное двухполярное питание, но это не так уж и большая помеха, поскольку сегодня известно можество схем преобразователей напряжения, одна из таких схем выполняется на микросхеме TL494. Схема стандартная и позволяет получить на выходе трансформатора до 200 ватт мощности, что вполне хватает для полноценной работы данного самодельного усилителя. Схему преобразователя не привожу, поскольку это уже совсем другая тема.

Хочу предложить начинающим любителям качественного звуковоспроизведения одну из разработанных и опробованных схем УНЧ. Данная конструкция поможет сделать качественный усилитель, который можно дорабатывать с минимальными затратами и использовать усилитель для исследований схемных решений.

Это поможет в пути от простого к сложному и более совершенному. К описанию прилагаются файлы печатных плат, которые можно трансформировать под конкретный корпус.

В представленном варианте использовался корпус от Радиотехники У-101.

Данный усилитель мощности я разрабатывал и делал в прошлом веке из того, что возможно было приобрести без затруднений. Хотелось сделать конструкцию с максимально возможным соотношением цены и качества. Это не High-End, но и не третий сорт. Усилитель имеет качественное звучание, отличную повторяемость и прост в наладке.

Принципиальная схема усилителя

Схема полностью симметрична для положительной и отрицательной полуволн низкочастотного сигнала. Входной каскад выполнен на транзисторах VT1 – VT4. От прототипа он отличается транзисторами VT1 и VT4, которые повышают линейность каскадов на транзисторах VT2 и VT3. Существует множество схемных разновидностей входных каскадов, обладающих различными достоинствами и недостатками. Этот каскад выбран из-за простоты, возможности снижения нелинейности амплитудной характеристики транзисторов. С появлением более совершенных схем входных каскадов можно проводить его замену.

Сигнал отрицательной обратной связи (ООС) берется с выхода усилителя напряжения и поступает в эмиттерные цепи транзисторов VT2 и VT3. Отказ от общей ООС обусловлен желанием избавиться от влияния на ООС всего лишнего, что не является выходным сигналом схемы. В этом есть свои плюсы и минусы. При данной комплектации это оправдано. При более качественных комплектующих элементах можно пробовать и с различными типами обратной связи.

В качестве усилителя напряжения выбрана каскодная схема, которая обладает большим входным сопротивлением, малой проходной емкостью и меньшими нелинейными искажениями в сравнении со схемой ОЭ. Недостатком каскодной схемы является меньшая амплитуда выходного сигнала. Такова плата за меньшие искажения. Если установить перемычки, то на печатной плате можно собирать и схему ОЭ. Питание усилителя напряжения от отдельного источника напряжения не вводилось из-за желания упростить конструкцию УНЧ.

Выходной каскад представляет собой параллельный усилитель, обладающий рядом преимуществ перед другими схемами. Одно из важных преимуществ – линейность схемы при значительном разбросе параметров транзисторов, что проверялось при сборке усилителя. Этот каскад должен обладать, возможно, большей линейностью, т.к. нет общей ООС и от него очень зависит качество выходного сигнала усилителя. Напряжение питания усилителя 30 В.

Конструкция усилителя

Печатные платы я разрабатывал для «доступных» корпусов от усилителей Радиотехника У-101. Схему разместил на двух частях печатной платы. На первой части, которая закреплена на радиаторе, размещены «параллельный» усилитель и усилитель напряжения. На второй части платы размещен входной каскад. Эта плата крепится на первой плате при помощи уголков. Такое разбиение платы на две части позволяет с минимальными конструктивными изменениями проводить усовершенствование усилителя. Кроме того, такая компоновка может служить и для лабораторных исследований каскадов.

Собирать усилитель необходимо в несколько этапов. Сборка начинается с параллельного усилителя и его налаживания. Вторым этапом собирается и налаживается остальная часть схемы и проводится окончательная минимизация искажений схемы. При размещении транзисторов выходного каскада на радиаторе необходимо помнить о необходимости теплового контакта корпусов попарно транзисторов VT9, VT14 и VT10, VT13.

Печатные платы разработаны с помощью программы Sprint Layout 6, что позволит корректировать размещение элементов на плате, т.е. подгонять под конкретную комплектацию или корпус. См. архивы внизу.

Детали усилителя

Параметры усилителя зависят от качества применяемых радиоэлементов и их расположения на плате. Примененные схемные решения позволяют обойтись без подбора транзисторов, но желательно применять транзисторы с граничной частотой усиления от 5 до 200 МГц и запасом предельного рабочего напряжения более чем в 2 раза в сравнении с напряжением питания каскада.

Если есть желание и возможность, то желательно выбирать транзисторы по принципу «комплементарности» и одинаковости усилительных характеристик. Пробовались варианты изготовления с подбором транзисторов и без него. Вариант с подобранными «комплементарными» отечественными транзисторами показал значительно лучшие характеристики, чем без подбора. Только КТ940 и КТ9115 из отечественных транзисторов являются комплементарными, а у остальных комплементарность условная. Среди зарубежных транзисторов комплементарных пар очень много и информацию об этом можно взять на сайтах производителей и в справочниках.

В качестве VT1, VT3, VT5 возможно применение транзисторов серии КТ3107 с любыми буквами. В качестве VT2, VT4, VT6 возможно применение транзисторов серии КТ3102 с буквами, которые имеют характеристики схожие с примененными транзисторами для другой полуволны звукового сигнала. Если возможен подбор транзисторов по параметрам, то лучше сделать это. Почти все современные тестеры позволяют это сделать без проблем. При больших отклонениях временные затраты при настройке будут больше и результат скромнее. Для VT6 подойдут транзисторы КТ9115А, КП960А, а для VT7 – КТ940А, КП959А.

В качестве VT9 и VT12 можно применять транзисторы КТ817В (Г), КТ850А, а в качестве VT10 и VT11 – КТ816В (Г), КТ851А. Для VT13 подойдут транзисторы КТ818В (Г), КП964А, а для VT14 – КТ819В (Г), КП954А. Вместо стабилитронов VD3 и VD4 можно использовать по два последовательно соединенных светодиода АЛ307 или им подобные.

Схема позволяет применять и другие детали, но может потребоваться коррекция печатных плат. Конденсатор С1 может иметь емкость от 1 мкФ до 4,7 мкФ и обязательно полипропиленовый или другой, но качественный. На радиолюбительских сайтах можно найти об этом информацию. Подключение напряжения питания, входного и выходного сигналов проводится с использованием клемм для печатного монтажа.

Налаживание усилителя

При первом включении УНЧ следует подключать через мощные керамические резисторы (10 – 100 Ом). Это спасет элементы от перегрузок и выхода из строя при ошибке в монтаже. На первой части платы выставляется резистором R23 ток покоя УНЧ (150-250 мА) при отключенной нагрузке. Далее надо установить отсутствие постоянного напряжения на выходе усилителя при подключенном эквиваленте нагрузки. Это делается изменением номинала одного из резисторов R19 или R20.

После монтажа остальной части схемы резистор R14 выставить в среднее положение. На эквиваленте нагрузки проверяется отсутствие возбуждения усилителя и резистором R5 устанавливаем отсутствие постоянного напряжения на выходе усилителя. Усилитель можно считать настроенным в статическом режиме.

Для налаживания в динамическом режиме параллельно эквиваленту нагрузки подключается последовательная RС цепь. Резистор мощностью 0,125 Вт и номиналом 1,3-4,7 кОм. Конденсатор неполярный 1-2 мкФ. Параллельно конденсатору подключаем микроамперметр (20-100 мкА). Затем, подав на вход усилителя синусоидальный сигнал частотой 5-8 кГц, по подключенному к выходу осциллографу и вольтметру переменного тока нужно оценить пороговый уровень насыщения усилителя. После этого снижаем входной сигнал до уровня 0,7 от насыщения и резистором R14 добиться минимума показания микроамперметра. В некоторых случаях, для снижения искажений на верхних частотах, необходимо проводить коррекцию фазы по опережению установкой конденсатора С12 (0,02-0,033 мкФ).

Конденсаторы С8 и С9 подбираются по наилучшей передаче импульсного сигнала частотой 20 кГц (ставятся при необходимости). Конденсатор С10 можно не ставить, если схема устойчива. Изменением номинала резистора R15 устанавливают одинаковое усиление для каждого из каналов стереофонического или многоканального варианта. Изменяя величину тока покоя выходного каскада можно попытаться найти наиболее линейный режим работы.

Оценка звучания

Собранный усилитель обладает весьма хорошим звучанием. Долгое прослушивание усилителя не приводит к «утомлению». Конечно, есть и лучше усилители, но по соотношению затрат и полученного качества схема понравится многим. При более качественных деталях и их подборе можно добиться и еще более значительных результатов.

Ссылки и файлы

1. Король В., "УМЗЧ с компенсацией нелинейности амплитудной характеристики" - Радио, 1989, № 12, с. 52-54.

09-06-2017 - Исправлена схема, перезалиты все архивы.
🕗 09/06/17 ⚖️ 24,43 Kb ⇣ 17 Здравствуй, читатель! Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года.
Уже более 10 лет наш журнал существует только на мои средства.

Хорош! Халява кончилась. Хочешь файлы и полезные статьи - помоги мне!

Схема № 1

Выбор класса усилителя . Сразу предупредим радиолюбителя - делать усилитель класса A на транзисторах мы не будем. Причина проста - как было сказано во введении, транзистор усиливает не только полезный сигнал, но и поданное на него смещение. Проще говоря, усиливает постоянный ток. Ток этот вместе с полезным сигналом потечет по акустической системе (АС), а динамики, к сожалению, умеют этот постоянный ток воспроизводить. Делают они это самым очевидным образом - вытолкнув или втянув диффузор из нормального положения в противоестественное.

Попробуйте прижать пальцем диффузор динамика - и вы убедитесь, в какой кошмар превратится при этом издаваемый звук. Постоянный ток по своему действию с успехом заменяет ваши пальцы, поэтому динамической головке он абсолютно противопоказан. Отделить же постоянный ток от переменного сигнала можно только двумя средствами - трансформатором или конденсатором, - и оба варианта, что называется, один хуже другого.

Принципиальная схема

Схема первого усилителя, который мы соберем, приведена на рис. 11.18.

Это усилитель с обратной связью, выходной каскад которого работает в режиме В. Единственное достоинство этой схемы - простота, а также однотипность выходных транзисторов (не требуется специальные комплементарные пары). Тем не менее, она достаточно широко применяется в усилителях небольшой мощности. Еще один плюс схемы - она не требует никакой настройки, и при исправных деталях заработает сразу, а нам это сейчас очень важно.

Рассмотрим работу этой схемы. Усиливаемый сигнал подается на базу транзистора VT1. Усиленный этим транзистором сигнал с резистора R4 подается на базу составного транзистора VT2, VT4, а с него - на резистор R5.

Транзистор VT3 включен в режиме эмиттерного повторителя. Он усиливает положительные полуволны сигнала на резисторе R5 и подает их через конденсатор C4 на АС.

Отрицательные же полуволны усиливает составной транзистор VT2, VT4. При этом падение напряжения на диоде VD1 закрывает транзистор VT3. Сигнал с выхода усилителя подается на делитель цепи обратной связи R3, R6, а с него - на эмиттер входного транзистора VT1. Таким образом, транзистор VT1 у нас и играет роль устройства сравнения в цепи обратной связи.

Постоянный ток он усиливает с коэффициентом усиления, равным единице (потому что сопротивление конденсатора C постоянному току теоретически бесконечно), а полезный сигнал - с коэффициентом, равным соотношению R6/R3.

Как видим, величина емкостного сопротивления конденсатора в этой формуле не учитывается. Частота, начиная с которой конденсатором при расчетах можно пренебречь, называется частотой среза RC-цепочки. Частоту эту можно рассчитать по формуле

F = 1 / (R×C) .

Для нашего примера она будет около 18 Гц, т. е. более низкие частоты усилитель будет усиливать хуже, чем он мог бы.

Плата . Усилитель собран на плате из одностороннего стеклотекстолита толщиной 1.5 мм размерами 45×32.5 мм. Разводку печатной платы в зеркальном изображении и схему расположения деталей можно скачать . Видеоролик о работе усилителя в формате MOV скачать для просмотра можно . Хочу сразу предупредить радиолюбителя - звук, воспроизводимый усилителем, записывался в ролике с помощью встроенного в фотоаппарат микрофона, так что говорить о качестве звука, к сожалению, будет не совсем уместно! Внешний вид усилителя приведен на рис. 11.19.

Элементная база . При изготовлении усилителя транзисторы VT3, VT4 можно заменить любыми, рассчитанными на напряжение не менее напряжения питания усилителя, и допустимым током не менее 2 А. На такой же ток должен быть рассчитан и диод VD1.

Остальные транзисторы - любые с допустимым напряжением не менее напряжение питания, и допустимым током не менее 100 мА. Резисторы - любые с допустимой рассеиваемой мощностью не менее 0.125 Вт, конденсаторы - электролитические, с емкостью, не менее указанной на схеме, и рабочим напряжением на менее напряжения питания усилителя.

Радиаторы для усилителя . Прежде чем попробовать изготовить нашу вторую конструкцию, давайте, уважаемый радиолюбитель, остановимся на радиаторах для усилителя и приведем здесь весьма упрощенную методику их расчета.

Во-первых, вычисляем максимальную мощность усилителя по формуле:

P = (U × U) / (8 × R), Вт ,

где U - напряжение питания усилителя, В; R - сопротивление АС (обычно оно составляет 4 или 8 Ом, хотя бывают и исключения).

Во-вторых, вычисляем мощность, рассеиваемую на коллекторах транзисторов, по формуле:

P рас = 0,25 × P, Вт .

В-третьих, вычисляем площадь радиатора, необходимую для отвода соответствующего количества тепла:

S = 20 × P рас, см 2

В-четвертых, выбираем или изготавливаем радиатор, площадь поверхности которого будет не менее рассчитанной.

Указанный расчет носит весьма приблизительный характер, но для радиолюбительской практики его обычно бывает достаточно. Для нашего усилителя при напряжении питания 12 В и сопротивлении АС, равным 8 Ом, «правильным» радиатором была бы алюминиевая пластина размерами 2×3 см и толщиной не менее 5 мм для каждого транзистора. Имейте ввиду, что более тонкая пластина плохо передает тепло от транзистора к краям пластины. Хочется сразу предупредить - радиаторы во всех остальных усилителях тоже должны быть «нормальных» размеров. Каких именно - посчитайте сами!

Качество звучания . Собрав схему, вы обнаружите, что звук усилителя не совсем чистый.

Причина этого - «чистый» режим класса В в выходном каскаде, характерные искажения которого даже обратная связь полностью скомпенсировать не способна. Ради эксперимента попробуйте заменить в схеме транзистор VT1 на КТ3102ЕМ, а транзистор VT2 - на КТ3107Л. Эти транзисторы имеют значительно больший коэффициент усиления, чем КТ315Б и КТ361Б. И вы обнаружите, что звучание усилителя значительно улучшилось, хотя все равно останутся заметными некоторые искажения.

Причина этого также очевидна - больший коэффициент усиления усилителя в целом обеспечивает большую точность работы обратной связи, и больший ее компенсирующий эффект.

Продолжение читайте



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама