THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Многие знают как я люблю разбираться с разными блоками питания. В этот раз у меня на столе несколько необычный блок питания, по крайней мере такой я еще не тестировал. Да и по большому счету вообще не встречал ранее обзоров блоков питания подобной разновидности, хотя вещь по своему интересная и я раньше делал подобные блоки питания сам.
Заказать я его решил из чистого любопытства, решил что может быть полезным. Впрочем подробнее в обзоре.

Вообще стоит наверное начать с небольшого лирического вступления. Много лет назад я довольно сильно увлекался аудиотехникой, прошел как через полностью самодельные варианты, так и «гибриды», где использовались УМ мощностью до 100 Ватт из магазина Юный техник, и полуразобранная Радиотехника УКУ 010, 101 и Одиссей 010, потом был Феникс 200У 010С.
Даже пробовал собрать УМЗЧ Сухова, но что-то тогда не пошло, уже и не вспомню что именно.

Акустика также разная была, как самодельная, так и готовая, например Романтика 50ас-105, Кливер 150ас-009.

Но больше всего запомнились Амфитон 25АС 027, правда они у меня были несколько доработаны. Попутно к небольшим изменениям схемы и конструкции я заменил родные динамики 50 ГДН на 75 ГДН.
Это и предыдущие фото не мои, так как моя аппаратура давно продана, а я потом перешел на Sven IHOO 5.1, а затем вообще стал слушать только мелкие компьютерные колоночки. Да, вот такой регресс.

Но вот что-то начали бродить в голове мысли, сделать что нибудь, например усилитель мощности, возможно просто так, возможно вообще все делать по другому. Но в итоге решил я заказать блок питания. Конечно я могу его сделать сам, мало того, в одном из обзоров я не только это делал, а и выложил подробную инструкцию, но к этому я еще вернусь, а пока перейду к обзору.

Начну со списка заявленных технических характеристик:
Напряжение питания - 200-240 Вольт
Выходная мощность - 500 Ватт
Выходные напряжения:
Основное - ±35 Вольт
Вспомогательное 1 - ± 15 Вольт 1 Ампер
Вспомогательное 2 - 12 Вольт 0.5 Ампера, гальванически отвязано от остальных.
Размеры - 133 x 100 x 42 мм

Каналы ± 15 и 12 Вольт имеют стабилизацию, основное напряжение ±35 Вольт не стабилизировано. Здесь я наверное выскажу свое мнение.
Меня часто спрашивают, какой блок питания купить для одного либо другого усилителя. На что я обычно отвечаю - проще собрать самому на базе известных драйверов IR2153 и их аналогов. Первый же вопрос, который следует после этого - так у них же нет стабилизации напряжения.
Да, лично на мой взгляд - стабилизация напряжения питания УМЗЧ не только не нужна, а иногда и вредна. Дело в том, что стабилизированный БП обычно больше шумит на ВЧ и кроме того, могут быть проблемы с цепями стабилизации, потому как усилитель мощности потребляет энергию не равномерно, а всплесками. Мы же слушаем музыку, а не одну частоту.
БП без стабилизации обычно имеет немного выше КПД, так как трансформатор всегда работает в оптимальном режиме, не имеет обратной связи и потому больше похож на обычный трансформатор, но с меньшим активным сопротивлением обмоток.

Вот собственно перед нами и пример БП для усилителей мощности.

Упаковка мягкая, но замотали так, что вряд ли получится его повредить в процессе доставки, хотя противостояние почты и продавцов наверное будет вечным.

Внешне выглядит красиво, особо и не придерешься.



Размер относительно компактный, особенно если сравнивать с обычным трансформатором соответствующей мощности.

Более понятные размеры есть на странице товара в магазине.

1. На входе блока питания установлен разъем, что оказалось довольно удобным.
2. Присутствует предохранитель и полноценный входной фильтр. Вот только про термистор, защищающий от бросков тока как сеть, так и диодный мост с конденсаторами, забыли, это плохо. Также в районе входного фильтра расположены контактные площадки, которые надо замкнуть для перевода БП на напряжение 110-115 Вольт. Перед первым включением лучше проверить, не замкнуты ли площадки если у вас в сети 220-230.
3. Диодный мост KBU810, все бы ничего, но он без радиатора, а при 500 Ватт он уже желателен.
4. Входные фильтрующие конденсаторы имеют заявленную емкость 470 мкФ, реальная около 460 мкФ. Так как они включены последовательно, то общая емкость входного фильтра составляет 230мкФ, маловато для выходной мощности в 500 Ватт. Кстати плата предполагает установку и одного конденсатора. Но в любом случае поднимать емкость без установки термистора я бы не советовал. Причем справа от предохранителя есть даже место для термистора, надо только впаять его и перерезать под ним дорожку.

В инверторе применены транзисторы IRF740, хоть и далеко не новые транзисторы, но раньше я их также широко применял в подобных применениях. Как альтернатива, IRF830.
Транзисторы установлены на отдельных радиаторах, сделано это отчасти не просто так. Радиаторы соединены с корпусом транзистора, причем не только в месте крепления самого транзистора, а и монтажные выводы радиатора соединены на самой плате. На мой взгляд плохое решение, так как будет лишнее излучение в эфир на частоте преобразования, по крайней мере нижний транзистор инвертора (на фото он дальний) я бы отвязал от радиатора, а радиатор от схемы.

Управляет транзисторами неизвестный модуль, но судя по наличию резистора питания, да и просто моему опыту, думаю что не сильно ошибусь, если скажу что внутри стоит банальная IR2153. правда зачем делать такой модуль, для меня осталось загадкой.

Инвертор собран по полумостовой схеме, но в качестве средней точки используется не точка соединения фильтрующих электролитических конденсаторов, а два пленочных конденсатора емкостью 1мкФ (на фото два параллельно трансформатору), а первичная обмотка подключена через третий конденсатор, также емкостью 1мкФ (на фото перпендикулярно трансформатору).
Решение известное и по своему удобное, так как позволяет весьма просто не только увеличить емкость входного фильтрующего конденсатора, а и применить один на 400 Вольт, что может быть полезным при апгрейде.

Габарит трансформатора весьма скромный для заявленной мощности в 500 Ватт. Я конечно протестирую еще его под нагрузкой, но уже могу сказать, что на мой взгляд его реальная длительная мощность на более 300-350 Ватт.

На странице магазина, в перечне ключевых особенностей, было указано -

3. Transformers 0.1 mm * 100 multi-strand oxygen-free enameled wire, heat is very low, efficiency is more than 90%.
Что в переводе означает - в трансформаторе использована обмотка из 100 штук бескислородных проводов диаметром 0.1мм, уменьшен нагрев и КПД выше 90%.
Ну КПД я проверю потом, а вот насчет того, что обмотка многопроволочная, факт. Я конечно их не пересчитывал, но жгут довольно неплохой и данный вариант намотки действительно положительно сказывается на качестве работы трансформатора в частности и всего БП в целом.

Не забыли и про конденсатор, соединяющий «горячую» и «холодную» сторону БП, причем поставили его правильного (Y1) типа.

В выходном выпрямителе основных каналов применены диодные сборки MUR1620CTR и MUR1620CT (16 Ампер 200 Вольт), причем производитель не стал колхозить «гибридные» варианты, а поставил как положено, две комплементарные сборки, одна с общим катодом, а другая с общим анодом. Обе сборки установлены на отдельных радиаторах и также как в случае с транзисторами, они не изолированы от компонентов. Но в данном случае проблема может быть только в плане электробезопасности, хотя если корпус закрыт, то ничего страшного в этом нет.
В выходном фильтре задействовано по паре конденсаторов 1000мкФ х 50 Вольт, что на мой взгляд маловато.

Кроме того, для уменьшения пульсаций между конденсаторами установлен дроссель, а конденсаторы, стоящие после него, дополнительно зашунтированы керамическим 100 нФ.
Вообще на странице товара было написано -

1. All high-frequency low-impedance electrolytic capacitors specifications, low ripple.
В переводе - все конденсаторы имеют низкий импеданс для уменьшения пульсаций. В общем-то так то оно и есть, применены Cheng-X, но это по сути просто немного улучшенный вариант обычных китайских конденсаторов и я бы лучше поставил мою любимую Samwha RD или Capxon KF.

Параллельно конденсаторам нет разрядных резисторов, хотя место на плате для них имеется, потому вас могут ждать «сюрпризы», так как заряд держится довольно долго.

Дополнительные каналы питания подключены к своим обмоткам трансформатора, причем канал 12 Вольт гальванически отвязан от остальных.
Каждый канал имеет независимую стабилизацию напряжения, дроссели для уменьшения помех и керамические конденсаторы по выходу. Но вы наверное заметили, что диодов в выпрямителе пять. Канал 12 Вольт питается от однополупериодного выпрямителя.

По выходу, как и по входу, стоят клеммники, причем весьма неплохого качества и конструкции.

На странице товара есть фото сверху, где видно все и сразу. Уже потом заметил, что в магазине на всех фото есть монтажные стойки, в моем комплекте их не было:(

Печатная плата двухсторонняя, качество весьма высокое, использован стеклотекстолит, а не привычный гетинакс. В одном из узких место сделана защитная прорезь.
Снизу также обнаружилась пара резисторов, предположу, что это примитивная схема защиты от перегрузки, которую иногда добавляют к драйверам на IR2153. Но честно говоря, я бы на нее не рассчитывал.

Также снизу печатной платы присутствует маркировка выходов и варианты выходных напряжений, под которые изготавливаются данные платы. Немного заинтриговали две вещи - два одинаковых варианта ± 70 Вольт и заказной вариант.

Перед тем, как перейти к тестам, немного расскажу о своем варианте подобного БП.
Примерно три с половиной года назад я выкладывал регулируемого БП, где использовался блок питания собранный примерно по такой же схеме.

В собранном виде он также выглядел довольно похоже, извините за плохое качество фото.

Если убрать из моего варианта все «лишнее», например узел регулировки оборотов вентилятора в зависимости от температуры, а также умощненный драйвер транзисторов и схему дополнительного питания от выхода инвертора, то мы получим схему обозреваемого БП.
По сути это тот же БП, только выходных напряжений больше. Вообще схемотехника данного БП совсем простая, проще только банальный автогенератор.

Кроме того обозреваемый БП снабжен примитивной схемой ограничения выходной мощности, подозреваю что реализована она так, как показано на выделенном участке схемы.

Но посмотрим на что способна данная схема и ее реализация в обозреваемом блоке питания.
Здесь надо отметить, что так как стабилизация основного напряжения отсутствует, то оно напрямую зависит от напряжения в сети.
При входном напряжении 223 Вольта выходное составляет 35.2 в режиме холостого хода. Потребление при этом 3.3 Ватта.

При этом присутствует заметный нагрев резистора питания драйвера транзисторов. Его номинал 150 кОм, что при 300 Вольт дает рассеиваемую мощность порядка 0.6 Ватта. Данный резистор греется независимо от нагрузки блока питания.
Также заметен небольшой нагрев трансформатора, фото сделано примерно через 15 минут после включения.

Для нагрузочного теста была собрана конструкция, состоящая из двух электронных нагрузок, осциллографа и мультиметра.
Мультиметр измерял один канал питания, второй канал контролировался вольтметром электронной нагрузки, которая была подключена короткими проводами.

Не буду утомлять читателя большим перечислением тестов, потому сразу перейду к осциллограммам.
1, 2. Разные точки выхода БП до диодных сборок, и с разным временем развертки. Частота работы инвертора составляет 70 кГц.
3, 4. Пульсации перед дросселем канала 12 Вольт и после него. После КРЕНки вообще все гладко, но есть проблема, напряжение в этой точке всего около 14.5 Вольта без нагрузки основных каналов и 13.6-13.8 с нагрузкой, что мало для стабилизатора 12 Вольт.

Нагрузочные тесты проходили так:
Сначала нагружал один канал на 50%, затем второй на 50%, потом нагрузку первого поднимал до 100%, а затем и второй. В итоге получалось четыре режима нагрузки - 25-50-75-100%.
Сначала что на выходе по ВЧ, на мой взгляд очень даже неплохо, пульсации минимальны, а при установке дополнительного дросселя их вообще можно свести почти до нуля.

А вот на частоте 100 Гц все довольно грустно, маловата емкость по входу, маловата.
Полный размах пульсаций при 500 Ватт выходной мощности составляет около 4 Вольт.

Нагрузочные тесты. Так как напряжение под нагрузкой проседало, то я по мере этого поднимал тока нагрузки чтобы выходная мощность примерно соответствовала ряду 125-250-375-500 Ватт.
1. Первый канал - 0 Ватт, 42.4 Вольта, второй канал - 126 Ватт, 33.75 Вольта
2. Первый канал - 125.6 Ватта, 32.21 Вольта, второй канал - 130 Ватт, 32.32 Вольта.
3. Первый канал - 247.8 Ватта, 29.86 Вольта, второй канал - 127 Ватт, 30.64 Вольта.
4. Первый канал - 236 Ватт, 29.44 Вольта, второй канал - 240 Ватт, 29.58 Вольта.

Вы наверное заметили, что в первом тесте напряжение не нагруженного канала больше 40 Вольт. Это обусловлено выбросами напряжения, а так как нагрузки нет совсем, то напряжение плавно поднималось, даже небольшая нагрузка возвращала напряжение в норму.

Одновременно измерялось потребление, но так как есть относительно большая погрешность при измерении выходной мощности, то расчетные значения КПД я также буду приводить ориентировочно.
1. 25% нагрузки, КПД 89.3%
2. 50% нагрузки, КПД 91.6%
3. 75% нагрузки, КПД 90%
4. 476 Ватт, около 95% нагрузки, КПД 88%
5, 6. Просто ради любопытства измерил коэффициент мощности при 50 и 100% мощности.

В общем-то результаты примерно похожи на заявленные 90%

Тесты показали довольно неплохую работу блока питания и все было бы замечательно, если бы не привычная «ложка дегтя» в виде нагрева. Еще в самом начале я оценил примерно мощность БП в 300-350 Ватт.
В процессе привычного теста с постепенным прогревом и интервалами по 20 минут я выяснил, что при мощности 250 Ватт Бп ведет себя просто отлично, нагрев компонентов примерно такой:
Диодный мост - 71
Транзисторы - 66
Трансформатор (магнитопровод) - 72
Выходные диоды - 75

Но когда я поднял мощность до 75% (375 Ватт), то через 10 минут картина была совсем дургая
Диодный мост - 87
Транзисторы - 100
Трансформатор (магнитопровод) - 78
Выходные диоды - 102 (более нагруженный канал)

Попытавшись разобраться с проблемой, я выяснил, что идет сильный перегрев обмоток трансформатора, в следствие этого прогревается магнитопровод, снижается его индукция насыщения и он начинает входить в насыщение в итоге резко увеличивается нагрев транзисторов (позже я регистрировал температуру до 108 градусов), затем я остановил тест. При этом тесты " на холодную" с мощностью в 500 Ватт проходили нормально.

Ниже пара термофото, первое при мощности нагрузки 25%, второе при 75%, соответственно через пол часа (20+10 минут). Температура обмоток достигла 146 градусов и был заметный запах перегретого лака.

В общем теперь подведу некоторые итоги, отчасти неутешительные.
Общее качество изготовления очень хорошее, но есть некоторые конструктивные нюансы, например установка транзисторов без изоляции от радиаторов. Радует большое количество выходных напряжений, например 35 Вольт для питания усилителя мощности, 15 для предварительного усилителя и независимые 12 Вольт для всяких сервисных устройств.

Есть схемные недоработки, например отсутствие термистора по входу и малая емкость входных конденсаторов.
В характеристиках было заявлено что дополнительные каналы 15 Вольт могут выдать ток до 1 Ампера, реально я бы не ждал больше 0.5 Ампера без дополнительного охлаждения стабилизаторов. Канал 12 Вольт скорее всего вообще не выдаст более 200-300мА.

Но все эти проблемы либо не критичны, либо легко решаются. Самая сложная проблема - нагрев. БП может длительно отдавать до 250-300 Ватт, 500 Ватт только относительно кратковременно, либо придется добавлять активное охлаждение.

Попутно у меня возник небольшой вопрос к уважаемой общественности. Есть мысли сделать свой усилитель, соответственно с обзорами. Но какой был бы интереснее, усилитель мощности, предварительный, если УМ, то на какую мощность и т.п. Лично мне он не особо нужен, но вот поковыряться настроение есть. Обозреваемый БП к этому имеет слабое отношение:)

На этом у меня все, надеюсь что информация была полезна и как обычно жду вопросов в комментариях.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +38 Добавить в избранное Обзор понравился +115 +179

Представляю вашему вниманию испытанную мной схему достаточно простого импульсного сетевого блока питания УМЗЧ. Мощность блока составляет около 200Вт(но можно разогнать и до 500Вт).

Краткие характеристики:

Входное напряжение — 220В;
Выходное напряжение — +-26В(при полной нагрузке просадка 2-4В);
Частота преобразования — 100кГц;
Максимальный ток нагрузки — 4А.

Схема блока
Блок питания построен на микросхеме IR2153 по схеме strannicmd



Конструкция и детали.

Блок питания собран на печатной плате из одностороннего стеклотекстолита. Рисунок печатной платы в Sprint-Layout под утюг найдете в конце статьи.
Входной дроссель из любого блока питания компьютера или монитора, входной конденсатор применен из расчета 1мкф на 1Вт.Далее плоский низкочастотный диодный мост GBUВ приблизительно на 3А в качестве ключей можно применить IRF 840, IRFI840GLC, IRFIBC30G, VT1 – BUT11, VT3 – c945, выходные диодные сборки лучше применить пошустрее в этой схеме я поставил Шотки MBR 1545, выходные дроссели сделаны из кусочков феррита длинной 4см и?3мм, 26 витков проводом ПЕВ-1, но я так думаю что можно применить и дроссель групповой стабилизации на кольце из распыленного железа(сам не пробовал).
Основную часть деталей можно найти в компьютерных БП.

Печатная плата

БП в сборе

Трансформатор

Трансформатор под свои нужды, можно рассчитать
Данный трансформатор намотан на одном кольце К32Х19Х16 из феррита марки М2000НМ (колечко синего цвета), первичная обмотка намотана равномерно по всему кольцу и составляет 34 витка провода МГТФ 0,7. Перед намоткой вторичных обмоток нужно обмотать первичную обмотку фторопластофой лентой. Обмотка II равномерно намотана сложенным вдвое проводом ПЭВ-1 0,7 и составляет 6+6 витков с отводом от середины. Обмотка III (самопитание IRки) равномерно намотана 3+3 витка витой парой (одна пара проводов) с отводом от средины.

Наладка БП

ВНИМАНИЕ!!! ПЕРВИЧНЫЕ ЦЕПИ БП НАХОДЯТСЯ ПОД СЕТЕВЫМ НАПРЯЖЕНИЕМ, ПОЭТОМУ НУЖНО СОБЛЮДАТЬ МЕРЫ ПРЕДОСТОРОЖНОСТИ ПРИ НАЛАДКЕ И ЭКСПЛУАТАЦИИ.
Первый запуск блока желательно производить подключив его через токоограничивающий резистор в место предохранителя, представляющий из себя лампу накаливания мощностью 60Вт и напряжением 220В, а IR-ку питать от отдельного блока питания 12В(обмотка самопитания отключена). При включенном БП через лампу сильно не грузите его. Как правило, правильно собранный БП в наладке не нуждается. При первом включении через лампу БП лампа должна загорется и сразу же потухнуть (моргнуть), если же так то все нормально и можно проверить питание на выходе. Все ок! тогда отключаем лампу, ставим предохранитель и подключаем самопитание микросхемы, при запуске БП светодиод который стоит между первой и третей ногой должен моргнуть и блок питания запустится.

Изготовление хорошего источника питания для усилителя мощности (УНЧ) или другого электронного устройства - это очень ответственная задача. От того, каким будет источник питания зависит качество и стабильность работы всего устройства.

В этой публикации расскажу о изготовлении не сложного трансформаторного блока питания для моего самодельного усилителя мощности низкой частоты "Phoenix P-400".

Такой, не сложный блок питания можно использовать для питания различных схем усилителей мощности низкой частоты.

Предисловие

Для будущего блока питания (БП) к усилителю у меня уже был в наличии тороидальный сердечник с намотанной первичной обмоткой на ~220В, поэтому задача выбора "импульсный БП или на основе сетевого трансформатора" не стояла.

У импульсных источников питания небольшие габариты и вес, большая мощность на выходе и высокий КПД. Источник питания на основе сетевого трансформатора - имеет большой вес, прост в изготовлении и наладке, а также не приходится иметь дело с опасными напряжениями при наладке схемы, что особенно важно для таких начинающих как я.

Тороидальный трансформатор

Тороидальные трансформаторы, в сравнении с трансформаторами на броневых сердечниках из Ш-образных пластин, имеют несколько преимуществ:

  • меньший объем и вес;
  • более высокий КПД;
  • лучшее охлаждение для обмоток.

Первичная обмотка уже содержала примерно 800 витков проводом ПЭЛШО 0,8мм, она была залита парафином и заизолирована слоем тонкой ленты из фторопласта.

Измерив приблизительные размеры железа трансформатора можно выполнить расчет его габаритной мощности, таким образом можно прикинуть подходит ли сердечник для получения нужной мощности или нет.

Рис. 1. Размеры железного сердечника для тороидального трансформатора.

  • Габаритная мощность (Вт) = Площадь окна (см 2) * Площадь сечения (см 2)
  • Площадь окна = 3,14 * (d/2) 2
  • Площадь сечения = h * ((D-d)/2)

Для примера, выполним расчет трансформатора с размерами железа: D=14см, d=5см, h=5см.

  • Площадь окна = 3,14 * (5см/2) * (5см/2) = 19,625 см 2
  • Площадь сечения = 5см * ((14см-5см)/2) = 22,5 см 2
  • Габаритная мощность = 19,625 * 22,5 = 441 Вт.

Габаритная мощность используемого мною трансформатора оказалась явно меньшей чем я ожидал - где-то 250 Ватт.

Подбор напряжений для вторичных обмоток

Зная необходимое напряжение на выходе выпрямителя после электролитических конденсаторов, можно приблизительно рассчитать необходимое напряжение на выходе вторичной обмотки трансформатора.

Числовое значение постоянного напряжения после диодного моста и сглаживающих конденсаторов возрастет примерно в 1,3..1,4 раза, по сравнению с переменным напряжением, подаваемым на вход такого выпрямителя.

В моем случае, для питания УМЗЧ нужно двуполярное постоянное напряжение - по 35 Вольт на каждом плече. Соответственно, на каждой вторичной обмотке должно присутствовать переменное напряжение: 35 Вольт / 1,4 = ~25 Вольт.

По такому же принципу я выполнил приблизительный расчет значений напряжения для других вторичных обмоток трансформатора.

Расчет количества витков и намотка

Для питания остальных электронных блоков усилителя было решено намотать несколько отдельных вторичных обмоток. Для намотки катушек медным эмалированным проводом был изготовлен деревянный челнок. Также его можно изготовить из стеклотекстолита или пластмассы.

Рис. 2. Челнок для намотки тороидального трансформатора.

Намотка выполнялась медным эмалированным проводом, который был в наличии:

  • для 4х обмоток питания УМЗЧ - провод диаметром 1,5 мм;
  • для остальных обмоток - 0,6 мм.

Число витков для вторичных обмоток я подбирал экспериментальным способом, поскольку мне не было известно точное количество витков первичной обмотки.

Суть метода:

  1. Выполняем намотку 20 витков любого провода;
  2. Подключаем к сети ~220В первичную обмотку трансформатора и измеряем напряжение на намотанных 20-ти витках;
  3. Делим нужное напряжение на полученное из 20-ти витков - узнаем сколько раз по 20 витков нужно для намотки.

Например: нам нужно 25В, а из 20-ти витков получилось 5В, 25В/5В=5 - нужно 5 раз намотать по 20 витков, то есть 100 витков.

Расчет длины необходимого провода был выполнен так: намотал 20 витков провода, сделал на нем метку маркером, отмотал и измерил его длину. Разделил нужное количество витков на 20, полученное значение умножил на длину 20-ти витков провода - получил приблизительно необходимую длину провода для намотки. Добавив 1-2 метра запаса к общей длине можно наматывать провод на челнок и смело отрезать.

Например: нужно 100 витков провода, длина 20-ти намотанных витков получилась 1,3 метра, узнаем сколько раз по 1,3 метра нужно намотать для получения 100 витков - 100/20=5, узнаем общую длину провода (5 кусков по 1,3м) - 1,3*5=6,5м. Добавляем для запаса 1,5м и получаем длину - 8м.

Для каждой последующей обмотки измерение стоит повторить, поскольку с каждой новой обмоткой необходимая на один виток длина провода будет увеличиваться.

Для намотки каждой пары обмоток по 25 Вольт на челнок были параллельно уложены сразу два провода (для 2х обмоток). После намотки, конец первой обмотки соединен с началом второй - получились две вторичные обмотки для двуполярного выпрямителя с соединением посередине.

После намотки каждой из пар вторичных обмоток для питания схем УМЗЧ, они были заизолированы тонкой фторопластовой лентой.

Таким образом были намотаны 6 вторичных обмоток: четыре для питания УМЗЧ и еще две для блоков питания остальной электроники.

Схема выпрямителей и стабилизаторов напряжения

Ниже приведена принципиальная схема блока питания для моего самодельного усилителя мощности.

Рис. 2. Принципиальная схема источника питания для самодельного усилителя мощности НЧ.

Для питания схем усилителей мощности НЧ используются два двуполярных выпрямителя - А1.1и А1.2. Остальные электронные блоки усилителя будут питаться от стабилизаторов напряжения А2.1 и А2.2.

Резисторы R1 и R2 нужны для разрядки электролитических конденсаторов, в момент когда линии питания отключены от схем усилителей мощности.

В моем УМЗЧ 4 канала усиления, их можно включать и выключать попарно с помощью выключателей, которые коммутируют линии питания платок УМЗЧ с помощью электромагнитных реле.

Резисторы R1 и R2 можно исключить из схемы если блок питания будет постоянно подключен к платам УМЗЧ, в таком случае электролитические емкости будут разряжаться через схему УМЗЧ.

Диоды КД213 рассчитаны на максимальный прямой ток 10А, в моем случае этого достаточно. Диодный мост D5 рассчитан на ток не менее 2-3А,собрал его из 4х диодов. С5 и С6 - емкости, каждая из которых состоит из двух конденсаторов по 10 000 мкФ на 63В.

Рис. 3. Принципиальные схемы стабилизаторов постоянного напряжения на микросхемах L7805, L7812, LM317.

Расшифровка названий на схеме:

  • STAB - стабилизатор напряжения без регулировки, ток не более 1А;
  • STAB+REG - стабилизатор напряжения с регулировкой, ток не более 1А;
  • STAB+POW - регулируемый стабилизатор напряжения, ток примерно 2-3А.

При использовании микросхем LM317, 7805 и 7812 выходное напряжение стабилизатора можно рассчитать по упрощенной формуле:

Uвых = Vxx * (1 + R2/R1)

Vxx для микросхем имеет следующие значения:

  • LM317 - 1,25;
  • 7805 - 5;
  • 7812 - 12.

Пример расчета для LM317: R1=240R, R2=1200R, Uвых = 1,25*(1+1200/240) = 7,5V.

Конструкция

Вот как планировалось использовать напряжения от блока питания:

  • +36В, -36В - усилители мощности на TDA7250
  • 12В - электронные регуляторы громкости, стерео-процессоры, индикаторы выходной мощности , схемы термоконтроля, вентиляторы, подсветка;
  • 5В - индикаторы температуры, микроконтроллер, панель цифрового управления.

Микросхемы и транзисторы стабилизаторов напряжения были закреплены на небольших радиаторах, которые я извлек из нерабочих компьютерных блоков питания. Корпуса крепились к радиаторам через изолирующие прокладки.

Печатная плата была изготовлена из двух частей, каждая из которых содержит двуполярный выпрямитель для схемы УМЗЧ и нужный набор стабилизаторов напряжения.

Рис. 4. Одна половинка платы источника питания.

Рис. 5. Другая половинка платы источника питания.

Рис. 6. Готовые компоненты блока питания для самодельного усилителя мощности.

Позже, при отладке я пришел к выводу что гораздо удобнее было бы изготовить стабилизаторы напряжений на отдельных платах. Тем не менее, вариант "все на одной плате" тоже не плох и по своему удобен.

Также выпрямитель для УМЗЧ (схема на рисунке 2) можно собрать навесным монтажом, а схемы стабилизаторов (рисунок 3) в нужном количестве - на отдельных печатных платах.

Соединение электронных компонентов выпрямителя показано на рисунке 7.

Рис. 7. Схема соединений для сборки двуполярного выпрямителя -36В+36В с использованием навесного монтажа.

Соединения нужно выполнять используя толстые изолированные медные проводники.

Диодный мост с конденсаторами на 1000pF можно разместить на радиаторе отдельно. Монтаж мощных диодов КД213 (таблетки) на один общий радиатор нужно выполнять через изоляционные термо-прокладки (терморезина или слюда), поскольку один из выводов диода имеет контакт с его металлической подкладкой!

Для схемы фильтрации (электролитические конденсаторы по 10000мкФ, резисторы и керамические конденсаторы 0,1-0,33мкФ) можно на скорую руку собрать небольшую панель - печатную плату (рисунок 8).

Рис. 8. Пример панели с прорезями из стеклотекстолита для монтажа сглаживающих фильтров выпрямителя.

Для изготовления такой панели понадобится прямоугольный кусочек стеклотекстолита. С помощью самодельного резака (рисунок 9), изготовленного из ножовочного полотна по металлу, прорезаем медную фольгу вдоль по всей длине, потом одну из получившихся частей разрезаем перпендикулярно пополам.

Рис. 9. Самодельный резак из ножовочного полотна, изготовленный на точильном станке.

После этого намечаем и сверлим отверстия для деталей и крепления, зачищаем тоненькой наждачной бумагой медную поверхность и лудим ее с помощью флюса и припоя. Впаиваем детали и подключаем к схеме.

Заключение

Вот такой, не сложный блок питания был изготовлен для будущего самодельного усилителя мощности звуковой частоты. Останется дополнить его схемой плавного включения (Soft start) и ждущего режима.

UPD : Юрий Глушнев прислал печатную плату для сборки двух стабилизаторов с напряжениями +22В и +12В. На ней собраны две схемы STAB+POW (рис. 3) на микросхемах LM317, 7812 и транзисторах TIP42.

Рис. 10. Печатная плата стабилизаторов напряжения на +22В и +12В.

Скачать - (63 КБ).

Еще одна печатная плата, разработанная под схему регулируемого стабилизатора напряжения STAB+REG на основе LM317:

Рис. 11. Печатная плата для регулируемого стабилизатора напряжения на основе микросхемы LM317.

От параметров источника питания качество звучания зависит не чуть не меньше, чем от самого усилителя и относится халатно к его изготовлению не следует. Описаний методик расчетов типовых трансформаторов более чем достаточно. Поэтому здесь предлагается описание импульсного источника питания, который может использоваться не только с усилителями на базе TDA7293 (TDA7294), но и с любым другим усилителем мощности 3Ч.

Основой данного блока питания (БП) служит полумостовой драйвер с внутренним генератором IR2153 (IR2155), предназначенный для управления транзисторами технологий MOSFET и IGBT в импульсных источниках питания. Функциональная схема микросхем приведена на рисунке 1, зависимость выходной частоты от номиналов RC-задающей цепочки на рисунке 2. Микросхема обеспечивает паузу между импульсами «верхнего» и «нижнего» ключей в течении 10% от длительности импульса, что позволяет не опасаться «сквозных» токов в силовой части преобразователя.

Рис. 1

Рис. 2

Практическая реализация БП приведена на рисунке 3. Используя данную схему можно изготовить БП мощностью от 100 до 500Вт, необходимо лишь пропорционально увеличивать емкость конденсатора фильтра первичного питания С2 и использовать соответствующий силовой трансформатор TV2.

Рис. 1

Емкость конденсатора С2 выбирается из расчета 1... 1,5 мкФ на 1 Вт выходной мощности, например при изготовлении БП на 150 Вт следует использовать конденсатор на 150...220 мкФ. Диодный мост первичного питания VD можно использовать в соответствии с установленным конденсатором фильтра первичного питания, при емкостях до 330 мкФ можно использовать диодные мосты на 4...6 А, например RS407 или RS607. При емкости конденсаторов 470... 680 мкФ нужны уже более мощные диодные мосты, например RS807, RS1007.
Об изготовлении трансформатора можно разговаривать долго, однако вникать в глубокую теорию расчетов слишком долго и далеко не каждому нужно. Поэтому расчеты по книге Эраносяна для самых ходовых типоразмеров ферритовых колец М2000НМ1 просто сведены в таблицу 1.
Как видно из таблицы габаритная мощность трансформатора зависит не только от габаритов сердечника, но и от частоты преобразования. Изготавливать трансформатор для частот ниже 40 кГц не очень логично - гармониками можно создать не преодолимые помехи в звуковом диапазоне. Изготовление трансформаторов на частоты выше 100 кГц уже непозволительно по причине саморазогрева феррита М2000НМ1 вихревыми токами. В таблице приведены данные по первичным обмоткам, из которых легко вычисляются отношения витков/вольт и дальше уже вычислить, сколько витков необходимо для того или иного выходного напряжения труда не составит. Следует обратить внимание на то, что подводимое к первичной обмотке напряжение составляет 155 В - сетевое напряжение 220 В после выпрямителя и слаживающего фильтра будет составлять 310 В постоянного напряжения, схема полу мостовая, следовательно к первичной обмотке будет прилагаться половина этого значения. Так же следует помнить, что форма выходного напряжения будет прямоугольной, поэтому после выпрямителя и слаживающего фильтра величина напряжения от расчетной отличаться будет не значительно.
Диаметры необходимых проводов рассчитываются из отношения 5 А на 1 кв мм сечения провода. Причем лучше использовать несколько проводов меньшего диаметра, чем один, более толстый провод. Это требование относится ко всем преобразователям напряжения, с частотой преобразования выше 10 кГц, так как начинает уже сказываться скинэффект - потери внутри проводника, поскольку на высоких частотах ток течет уже не по всему сечению, а по поверхности проводника и чем выше частота, тем сильнее сказываются потери в толстых проводниках. Поэтому не рекомендуется использовать в преобразователях с частотой преобразования выше 30 кГц проводники толще 1 мм. Следует так же обратить внимание на фазировку обмоток - неправильно сфазированные обмотки могут либо вывести силовые ключи из строя, либо снизить КПД преобразователя. Но вернемся к БП, приведенному на рисунке 3. Минимальная мощность данного БП практически ни чем не ограничена, поэтому можно изготовить БП и на 50 Вт и меньше. Верхний же предел мощности ограничен некоторыми особенностями элементной базы.
Для получения больших мощностей требуются транзисторы MOSFET более мощные, а чем мощнее транзистор, тем больше емкость его затвора. Если емкость затвора силового транзистора довольно высокая, то для её заряда-разряда требуется значительный ток. Ток транзисторов управления IR2153 довольно не велик (200 мА), следовательно, эта микросхема не может управлять слишком мощными силовыми транзисторами на больших частотах преобразования.
Исходя из вышесказанного становится ясно, что максимальная выходная мощность преобразователя на базе IR2153 не может быть более 500...600 Вт при частоте преобразования 50...70 кГц, поскольку использование более мощных силовых транзисторов на этих частотах довольно серьезно снижает надежность устройства. Список рекомендуемых транзисторов для силовых ключей VT1, VT2 с краткими характеристиками сведен в таблицу 2.
Выпрямительные диоды вторичных цепей питания должны иметь наименьшее время восстановления и как минимум двукратный запас по напряжению и трехкратный току. Последние требования обоснованы тем, что выбросы напряжения самоиндукции силового трансформатора составляют 20...50 % от амплитуды выходного напряжения. Например при вторичном питании в 100 В амплитуда импульсов самоиндукции может составлять 120... 150 В и не смотря на то, что длительность импульсов крайне мала ее достаточно чтобы вызвать пробой в диодах, при использовании диодов с обратным напряжением в 150 В. Трехкратный запас по току необходим для того, чтобы в момент включения диоды не вышли из строя, поскольку емкость конденсаторов фильтров вторичного питания довольно высокая, и для их заряда потребуется не малый ток. Наиболее приемлемые диоды VD4-VD11 сведены в таблицу 3.

Емкость фильтров вторичного питания (С11, С12) не следует увеличивать слишком сильно, поскольку преобразование производится на довольно больших частотах. Для уменьшения пульсаций гораздо актуальней использование большой емкости в первичных цепях питания и правильный расчет мощности силового трансформатора. Во вторичных же цепях конденсаторов на 1000 мкФ в плечо вполне достаточно для усилителей до 100 Вт (конденсаторы по питанию, установленные на самих платах УМЗЧ должны быть не менее 470 мкФ) и 4700 мкФ для усилителя на 500 Вт. На принципиальной схеме изображен вариант выпрямителей вторичного силового питания, выполненный на диодах Шотки, под них и разведена печатная плата (рисунок 4). На диодах VD12, VD13 выполнен выпрямитель для вентилятора принудительного охлаждения теплоотводов, на диодах VD14-VD17 выполнен выпрямитель для низковольтного питания (предварительные усилители, активные регуляторы тембра и т.д.). На том же рисунке приведен чертеж расположения деталей и схема подключения. В преобразователе имеется защита от перегрузки, выполненная на трансформаторе тока TV1, состоящая из кольца К20х12х6 феррита М2000 и содержащего 3 витка первичной обмотки (сечение такое же как и первичная обмотка силового трансформатора и 3 витка вторичной обмотки, намотанной двойным проводом диаметром 0,2...0,3 мм. При перегрузке напряжение на вторичной обмотке трансформатора TV1 станет достаточным для открытия тиристора VS1 и он откроется, замкнув питание микросхемы IR2153, тем самым прекратив ее работу. Порог срабатывания защиты регулируется резистором R8. Регулировку производят без нагрузки начиная с максимальной чувствительности и добиваясь устойчивого запуска преобразователя. Принцип регулировки основан на том, что в момент запуска преобразователя он нагружен максимально, поскольку требуется зарядить емкости фильтров вторичного питания и нагрузка на силовую часть преобразователя максимальная.

Об остальных деталях: конденсатор С5 - пленочный на 0,33... 1 мкФ 400В; конденсаторы С9, С10 - пленочные на 0,47...2,2 мкФ минимум на 250В; индуктивности L1...L3 выполнены на ферритовых кольцах К20х12х6 М2000 и наматываются проводом 0,8... 1,0 мм до заполнения виток к витку в один слой; С14, С15 - пленочные на 0,33...2,2 мкФ на напряжение не менее 100 В при выходном напряжении до 80 В; конденсаторы С1, С4, С6, С8 можно керамические, типа К10-73 или К10-17; С7 можно и керамический, но лучше пленочный, типа К73-17.

Данная статья посвящена серии импульсных источников питания 2161 Second Edition (SE) на основе контроллера IR2161.

  • Защита от короткого замыкания и перегрузки;
  • Автосброс защиты от короткого замыкания;
  • Частотная модуляция "dither" (для снижения ЭМИ);
  • Микротоковый запуск (для первоначального запуска контроллера достаточно тока не более 300мкА);
  • Возможность диммирования (но нам это не интересно);
  • Компенсация выходного напряжения (своеобразная стабилизация напряжения);
  • Софт-старт;
  • Адаптивное мертвое время ADT;
  • Компактный корпус;
  • Производится по бессвинцовой технологии (Leed-Free).

Приведу некоторые важные для нас технические характеристики :

Максимальный втекающий/вытекающий ток: +/-500мА
Достаточно больший ток позволяет управлять мощными ключами и строить на основе данного контроллера довольно мощные импульсные блоки питания без использования дополнительных драйверов;

Максимальный потребляемый контроллером ток: 10мА
Ориентируясь на это значения проектируются цепи питания микросхемы;

Минимальное рабочее напряжение питания контроллера: 10,5В
При меньшем значении напряжения питания контроллер переходит в UVLO режим и осцилляция прекращается;

Минимальное напряжение стабилизации встроенного в контроллер стабилитрона: 14,5В
Внешний стабилитрон должен иметь напряжение стабилизации не выше этого значения чтобы избежать повреждения микросхемы из-за шунтирования избыточного тока на вывод COM;

Напряжение на выводе CS для срабатывания защиты от перегрузки: 0,5В
Минимальное напряжение на выводе CS при котором происходит срабатывание защиты от перегрузки;

Напряжение на выводе CS для срабатывания защиты от короткого замыкания: 1В
Минимальное напряжение на выводе CS при котором происходит срабатывание защиты от короткого замыкания;

Рабочий диапазон частот: 34 - 70кГц
Рабочая частота напрямую не задается и зависит только от потребляемой нагрузкой мощности;

Мертвое время по умолчанию: 1мкС
Используется в случае невозможности работать в режиме адаптивного мертвого времени (ADT), а так же при отсутствии нагрузки;

Частота работы в режиме софт-старта: 130кГц
Частота на которой работает контроллер в режиме софт-старта;

Основное внимание сейчас следует уделить на то, какие существуют режимы работы микросхемы и в какой последовательности они расположены друг относительно друга. Основное внимание я уделю описанию принципа работы каждого из блоков схемы, а последовательность их работы и условиях перехода из одного режима в другой опишу более кратко. Начну с описания каждого из блоков схемы:

Under-voltage Lock-Out Mode (UVLO), режим блокировки при пониженном напряжении - режим в котором контроллер находится когда напряжение его питания ниже минимального порогового значения (примерно 10,5В).

Soft Start Mode, режим мягкого старта - режим работы, при котором осциллятор контроллера, короткое время работает на повышенной частоте. Когда осциллятор включается, частота его работы изначально очень высока (около 130 кГц). Это приводит к тому, что выходное напряжение преобразователя будет ниже, поскольку трансформатор блока питания имеет фиксированную индуктивность, которая будет иметь более высокий импеданс на более высокой частоте и, таким образом, уменьшается напряжение на первичной обмотке. Уменьшенное напряжение, естественно, приведет к уменьшенному току в нагрузке. По мере заряда конденсатора CSD от 0 до 5В, частота осцилляции будет плавно снижается со 130 кГц до рабочей частоты. От величины емкости конденсатора CSD будет зависеть длительность развертки софт-старта. Однако, так как конденсатор CSD также задает время задержки отключения и участвует в работе узла компенсации напряжения, его емкость должна быть строго 100нФ.

Проблема софт-старта. Хочется быть полностью честным и упомянуть тот факт, что при наличии на выходе блока питания фильтрующих конденсаторов большой емкости, софт-старт чаще всего не срабатывает и ИИП запускается сразу на рабочей частоте минуя режим софт-старта. Происходит этого по причине того, что в момент старта, разряженные конденсаторы во вторичной цепи имеют очень низкое собственное сопротивление и для их зарядки требуется очень высокий ток. Этот ток вызывает кратковременное срабатывание защиты от короткого замыкания, после чего контроллер сразу же перезапускается и переходит в режим RUN, минуя режим софт-старта. Бороться с этим можно увеличением индуктивности дросселей во вторичной цепи, стоящих сразу после выпрямителя. Дроссели с большой индуктивностью растягивают процесс заряда выходных фильтрующих конденсаторов, другими словами, конденсаторы заряжаются меньшим по величине током, но дольше по времени. Меньший зарядный ток не вызывает срабатывания защиты при старте и позволяет софт-старту нормально выполнять свои функции. На всякий случай, по поводу этого вопроса я обратился в техническую поддержку производителя, на что получил ответ:

"Типичный галогеновый преобразователь имеет выход переменного тока без выпрямительных или выходных конденсаторов. Мягкий пуск работает, уменьшая частоту. Для обеспечения плавного пуска необходимо, чтобы трансформатор имел значительную утечку. Однако это должно быть возможно в вашем случае. Попробуйте поместить индуктор на вторичной стороне от мостовых диодов к конденсатору.

С наилучшими пожеланиями.
Infineon Technologies
Steve Rhyme, Support Engineer"

Мои предположения по поводу причины неуверенной работы софт-старт оказались верны и более того, даже способ борьбы с этой проблемой мне предложили такой же. И снова, чтобы быть до конца честным, следует добавить что применение катушек с повышенной индуктивностью, относительно обычно применяемых на выходе ИИП, ситуацию улучшает, но полностью проблему не устраняет. Тем не менее, с этой проблемой можно мириться учитывая что по входу ИИП присутствует термистор, ограничивающий пусковой ток.

Run Mode, рабочий режим. Когда мягкий пуск завершен, система переходит в рабочий режим с компенсацией напряжения. Эта функция обеспечивает некоторую стабилизацию выходного напряжения преобразователя. Компенсация напряжения происходит благодаря изменению рабочей частоты преобразователя (увеличение частоты - уменьшает выходное напряжение), хотя точность такого типа "стабилизации" не высока, она нелинейна и зависит от многих параметров и, следовательно, нелегко предсказуема. IR2161 контролирует ток нагрузки через резистор тока (RCS). Пиковый ток детектируется и усиливается в контроллере, а затем воздействует на вывод CSD. Напряжение на конденсаторе CSD, в рабочем режиме (режиме компенсации напряжения), будет варьироваться от 0 (при минимальной нагрузке) до 5В (при максимальной нагрузке). При этом частота генератора будет варьироваться от 34 кГц (Vcsd = 5В), до 70 кГц (Vcsd = 0В).

Существует так же возможность приладить к IR2161 обратную связь, которая позволит организовать почти полноценную стабилизацию выходного напряжения и позволит значительно более точно отслеживать и поддерживать на выходе необходимое напряжение:

Подробно рассматривать эту схему в рамках данной статьи мы не будем.

Shut Down Mode, режим отключения. IR2161 содержит двухпозиционную систему автоматического отключения которая определяет как короткое замыкание, так и состояние перегрузки преобразователя. Напряжения на выводе CS используется для определения этих условий. Если выход преобразователя будет закорочен, через ключи будет протекать очень большой ток и система должна отключиться в течение нескольких периодов времени в сети, иначе транзисторы будут быстро уничтожены из-за теплового пробоя перехода. Вывод CS имеет задержку отключения для предотвращения ложного срабатывания, либо из-за пускового тока при включении, либо при переходных токах. Более низкий порог (когда Vcs > 0,5 < 1 В), имеет намного большую задержку до отключения ИИП. Задержка для отключения по перегрузке приблизительно равна 0,5 сек. Оба режима отключения (по перегрузке и по короткому замыканию), имеют автоматический сброс, что позволяет контроллеру возобновить работу примерно через 1 сек после устранения перегрузки или короткого замыкания. Это значит, что если неисправность будет устранена, преобразователь может продолжить нормально работать. Осциллятор работает на минимальной рабочей частоте (34 кГц), когда конденсатор CSD переключается к цепи отключения. В режиме плавного пуска или рабочем режиме, если превышен порог перегрузки (Vcs > 0,5В), IR2161 быстро заряжает CSD до 5В. Когда напряжение на выводе CS больше чем 0,5В и когда порог короткого замыкания 1В превышен, CSD будет заряжаться от 5В до напряжения питания контроллера (10-15В) за 50 мсек. Когда пороговое напряжение перегрузки Vcs более 0,5В, но менее 1В, CSD заряжается от 5В до напряжения питания приблизительно за 0,5 сек. Следует помнить и учитывать тот факт, что на выводе CS появляются высокочастотные импульсы с 50% рабочим циклом и синусоидальной огибающей - это означает, что только на пике напряжения сети конденсатор CSD будет заряжаться поэтапно, в каждом полупериоде. Когда напряжение на конденсаторе CSD достигнет величины напряжения питания, CSD разряжается до 2,4В и преобразователь снова запускается. Если неисправность все еще присутствует, CSD снова начинает заряжаться. Если неисправность исчезнет, то CSD разрядится до 2,4В, а затем система автоматически вернется в рабочий режим компенсации напряжения.

STANDBY mode, режим ожидания - режим в котором контроллер находится в случае недостаточного по величине напряжения питания, при этом он потребляет не более 300мкА. Осциллятор при этом, естественно, выключен и ИИП не работает, на его выходе напряжение отсутствует.

Блоки Fault Timing Mode, Delay и Fault Mode , хотя и показаны на блок-схеме, но по сути режимами работы контроллера не являются, скорее их можно отнести к переходным стадиям (Delay и Fault Mode) или условиям перехода из одного режима в другой (Fault Timing Mode).

А теперь опишу как все это вместе работает :
При подаче питания, контроллер стартует в режиме UVLO. Как только величина напряжения питания контроллера превысит минимально необходимое для устойчивой работы значение напряжения, контроллер переходит в режим софт-старта, осциллятор запускает на частоте 130кГц. Плавно заряжается конденсатор CSD до 5В. По мере заряда внешнего конденсаторы, частота работы осциллятора снижается до рабочей частоты. Таким образом контроллер переходит в режим RUN. Как только контроллер перешел в режим RUN, конденсатор CSD мгновенно разряжается до потенциала земли и подключается внутренним ключом к схеме компенсации напряжения. Если запуск ИИП происходит не на холостом ходу, а под нагрузкой, на выводе CS будет присутствовать потенциал пропорциональный величине нагрузки, который через внутренние цепи контроллера будет воздействовать на узел компенсации напряжения и не даст конденсатору CSD, после завершения софт-старта, полностью разрядиться. Благодаря этому запуск произойдет не на максимальной частоте рабочего диапазона, а на частоте соответствующей величине нагрузки на выходе ИИП. После перехода в режим RUN контроллер работает по ситуации: либо остается работать в этом режиме до того момента пока вам не надоест и вы не выключите блок питания из розетки, либо... В случае перегрева, контроллер переходит в режим FAULT, осциллятор прекращает свою работы. После остывания микросхемы происходит перезапуск. В случае перегрузки или короткого замыкания, контроллер переходит в режим Fault Timing, при этом внешний конденсатор CSD мгновенно отключается от узла компенсации напряжения и подключается к узлу отключения (конденсатор CSD в этом случае задает время задержки отключения контроллера). Частота работы мгновенно уменьшается до минимальной. В случае перегрузки (когда напряжение на выводе CS > 0,5 < 1 В), контроллер переходит в режим SHUTDOWN и выключается, но происходит это не мгновенно, а только в том случае, если перегрузка продолжается дольше половины секунды. Если перегрузки носят импульсный характер с продолжительностью импульса не более 0,5 сек, то контроллер будет просто работать на минимально возможно частоте, постоянно переключаясь между режимами RUN, Fault Timing, Delay, RUN (при этом будут отчетливо слышны щелчки). Когда напряжение на выводе CS превышает 1В, срабатывает защита от короткого замыкания. При устранении перегрузки или короткого замыкания, контроллер переходит в режим STANDBY и при наличии благоприятных условий для перезапуска, минуя режим софт-старта, переходит в режим RUN.

Теперь, когда вы понимаете как работает IR2161 (я на это надеюсь), я вам расскажу о самих импульсных источниках питания на ее основе. Хочу сразу предупредить, что если вы решите собирать импульсный блок питания на основе данного контроллера, то следует собирать ИИП руководствуясь последней, наиболее совершенной схемой на соответствующей ей печатной плате. Поэтому список радиоэлементов внизу статьи будет приведен только для последней версии блока питания. Все промежуточные редакции ИИП показаны лишь для демонстрации процесса совершенствования устройства.

И первый ИИП о котором пойдет речь условно назван мной 2161 SE 2 .

Основное и ключевое отличие 2161 SE 2 , заключается в наличии цепи самопитания контроллера, что позволило избавиться от кипящих гасящих резисторов и соответственно повысить на несколько процентов КПД. Так же были сделаны другие не менее значительные улучшения: оптимизация разводки печатной платы, добавлено больше выходных клемм для подключения нагрузки, добавлен варистор.

Схема ИИП приведена на изображении ниже:

Цепь самозапитки построена на VD1, VD2, VD3 и С8. Благодаря тому, что цепь самопитания подключается не к низкочастотной сети 220В (с частотой 50Гц), а к первичной обмотки высокочастотного трансформатора, емкость гасящего конденсатора самопитания (С8) составляет всего 330пФ. В случае если бы самопитание было организовано от низкочастотной сети 50Гц, то емкость гасящего конденсатора пришлось бы увеличить в 1000 раз, само-собой что такой конденсатор занял бы намного больше места на печатной плате. Описываемый способ самозапитки не менее эффективен чем самозапитка от отдельной обмотки трансформатора, но при этом значительно проще. Стабилитрон VD1 необходимо для облегчения работы встроенного стабилитрона контроллера, который не способен рассеивать значительную мощность и без установки внешнего стабилитрона может попросту быть пробит, что приведет к полной потере работоспособности микросхемы. Напряжение стабилизации VD1 должно находится в диапазоне 12 - 14В и не должно превышать напряжение стабилизация встроенного стабилитрона контроллера, которое составляет примерно 14,5В. В качестве VD1 можно применить стабилитрон с напряжением стабилизации 13В (например 1N4743 или BZX55-C13), или использовать несколько стабилитронов соединенных последовательно, что я и сделал. Мною были включены последовательно два стабилитрона: один из них на 8,2В, другой на 5,1В, что в итоге дало результирующее напряжение 13,3В. При таком подходе к питанию IR2161, напряжение питания контроллера не проседает и практически не зависит от величины нагрузки подключенной к выходу ИИП. В данной схеме R1 необходим только для старта контроллера, так сказать, для начального пинка. R1 немного греется, но далеко не так сильно как это было в первой версии этого блока питания. Использование высокоомного резистора R1 дает еще одну интересную особенность: напряжение на выходе ИИП появляется не сразу после включения в сеть, а через 1-2 секунды, когда зарядится С3 до минимального напряжения закуска 2161 (примерно 10,5В).

Начиная с данного ИИП и во всех последующих, на входе ИИП используется варистор, он предназначен для защиты ИИП от превышения входного напряжения выше допустимого значения (в данном случае - 275В), а так же очень эффективно подавляет высоковольтные помехи не пуская их на вход ИИП из сети и не выпуская помехи из ИИП обратно в сеть.

В выпрямителе вторичного питания блока питания, мною были применены диоды SF54 (200В, 5А) по два параллельно. Диоды расположены в два этажа, выводы диодов должны быть максимально возможной длины - это необходимо для лучшего отвода тепла (выводы являются своеобразным радиатором для диода) и лучшей циркуляции воздуха вокруг диодов.

Трансформатор в моем случае выполнен на сердечнике от компьютерного блока питания - ER35/21/11. Первичная обмотка имеет 46 витков в три провода 0,5мм, две вторичные обмотки по 12 витков в три провода 0,5мм. Входной и выходные дроссели так же взяты из компьютерного БП.

Описываемый блок питания долговременно (без ограничения по времени работы), способен отдавать в нагрузку 250Вт, кратковременно (не более минуты) - 350Вт. При использовании данного ИИП в режиме динамической нагрузки (например для питания усилителя мощности звуковой частоты класса B или AB), от данного импульсного блока питания возможно запитать УМЗЧ с суммарной выходной мощностью 300Вт (2х150Вт в режиме стерео).

Осциллограмма на первичной обмотке трансформатора (без снаббера, R5 = 0,15 Ом, 190Вт на выходе):

Как видно из осциллограммы, при выходной мощности 190Вт, частота работы ИИП снижается до 38кГц, на холостом ходу, ИИП работает на частоте 78кГц:

Из осциллограмм, кроме того, хорошо видно что на графике отсутствуют какие-либо выбросы, а это несомненно положительно характеризует данный ИИП.

На выходе блока питания, в одном из плеч можно наблюдать такую картину:

Пульсации имеют частоту 100Гц и напряжение пульсаций примерно 0,7В, что сопоставимо с пульсациями на выходе классического, линейного, не стабилизированного блока питания. Для сравнения привожу осциллограмму, снятую при работе на той же выходной мощности для классического блока питания (емкость конденсаторов 15000мкФ в плече):

Как видно из осциллограмм, пульсации напряжения питания на выходе импульсного блока питания ниже, чем у классического блока питания той же мощности (0,7В у ИИП, против 1В у классического блока). Но в отличие от классического блока питания, на выходе ИИП заметен небольшой высокочастотный шум. Тем не менее, каких-либо значительных по величине высокочастотных помех или выбросов - нет. Частота пульсаций напряжения питания на выходе - 100Гц и обусловлена она пульсацией напряжения в первичной цепи ИИП по шине +310В. Для еще большего снижения пульсаций на выходе ИИП, необходимо увеличивать емкость конденсатора С9 в первичной цепи блока питания или емкости конденсаторов во вторичной цепи блока питания (эффективнее первое), а для снижения высокочастотных помех - применять на выходе ИИП дроссели с более высокой индуктивностью.

Печатная плата выглядит следующим образом:

Следующая схема ИИП о которой пойдет речь - 2161 SE 3:

В готовом виде блок питания собранный по данной схеме выглядит так:

В схеме принципиальных отличий от SE 2 - нет, различия, в основном, касаются печатной платы. В схеме добавились лишь снабберы во вторичных обмотках трансформатора - R7, C22 и R8, C23. Увеличены номиналы затворных резисторов с 22Ом до 51Ом. Уменьшен номинал конденсатора C4 с 220мкФ до 47мкФ. Резистор R1 собран из четырех резисторов по 0.5Вт, что позволило снизить нагрев этого резистора и немного удешевить конструкцию т.к. в моих краях четыре полуваттных резистора стоят дешевле одного двухваттного. Но возможность установить один двухваттный резистор осталась. Кроме этого увеличен номинал конденсатора самозапитки до 470пФ, смысла в этом особого не было, но в качестве эксперимента это было сделано, полет нормальный. В качестве выпрямительных диодов во вторичной цепи применены диоды MUR1560 в корпусе ТО-220. Оптимизирована и уменьшена печатная плата. Габариты печатной платы SE 2 - 153х88, тогда как печатная плата SE 3 имеет габариты - 134х88. Печатная плата выглядит следующим образом:

Трансформатор выполнен на сердечнике от компьютерного блока питания - ER35/21/11. Первичная обмотка имеет 45 витков в три провода 0,5мм, две вторичные обмотки по 12 витков в четыре провода 0,5мм. Входной и выходные дроссели так же взяты из компьютерного БП.

Первое же включение этого ИИП в сеть показало что снабберы во вторичной цепи блока питания являются явно лишними, они сразу же были выпаяны и далее не использовались. Позже был выпаян и снаббер первичной обмотки, как оказалось от него намного больше вреда чем пользы.

С данного блока питания долговременно удалось снимать мощность 300-350Вт, кратковременно (не более минуты) данный ИИП может отдавать до 500Вт, через минуту работы в таком режиме, общий радиатор нагревается до 60 градусов.

Посмотри осциллограммы:

По прежнему все красиво, прямоугольник почти идеально прямоугольный, выбросов нет. Со снабберами, как не странно, были все не так красиво.

Следующая схема - финальная и наиболее совершенная 2161 SE 4 :

В собранном виде устройство по данной схеме выглядит так:

Как и в прошлый раз, каких либо сильных изменений в схеме не произошло. Пожалуй самое заметное отличие - пропали снабберы, как в первичной цепи, так и во вторичных. Потому-что, как показали мои эксперименты, из-за особенностей работы контроллера IR2161, снабберы только мешают ему работать и попросту противопоказаны. Так же были сделаны другие изменения. Уменьшены номиналы затворных резисторов (R3 и R4), с 51 до 33 Ом. Последовательно с конденсатором самозапитки C7, добавлен резистор R2 для защиты от сверхтоков при зарядке конденсаторов C3 и С4. Резистор R1 по прежнему состоит из четырех полуваттных резисторов, а резистор R6 теперь спрятан под платой и представляет из себя три SMD резистора формата 2512. Тремя резисторами набирается необходимое сопротивление, но не обязательно использовать именно три резистора, в зависимости от требуемой мощности можно использовать один, два или три резистора - это допустимо. Термистор RT1 перенесен со схода ИИП в цель +310В. Остальные измерения касаются лишь разводки печатной платы и выглядит она следующим образом:

На печатной плате добавлен зазор безопасности между первичными и вторичными цепями, в наиболее узком месте сделан сквозной пропил в плате.

Трансформатор точно такой же как и в предыдущем блоке питания: выполнен на сердечнике от компьютерного блока питания - ER35/21/11. Первичная обмотка имеет 45 витков в три провода 0,5мм, две вторичные обмотки по 12 витков в четыре провода 0,5мм. Входной и выходные дроссели так же взяты из компьютерного БП.

Выходная мощность блока питания осталась прежней - 300-350Вт в долговременном режиме и 500Вт в кратковременно режиме (не более минуты). От данного ИИП можно запитывать УМЗЧ с суммарной выходной мощностью до 400Вт (2х200Вт в стерео режиме).

Теперь посмотрим осциллограммы на первичной обмотке трансформатора этого импульсного источника питания:

По прежнему все красиво: прямоугольник прямоугольный, выбросов нет.

На выходе одно из плеч блока питания, на холостом ходу, можно наблюдать следующую картину:

Как видно на выходе присутствуют ничтожно малый по величине высокочастотный шум с напряжением не более 8мВ (0,008В).

Под нагрузкой, на выходе, можно наблюдать уже хорошо знакомые нам пульсации с частотой 100Гц:

При выходной мощности 250Вт, напряжение пульсаций на выходе ИИП составляет 1,2В, что учитывая меньшую емкость конденсаторов во вторичной цепи (2000мкФ в плече, против 3200мкФ у SE2) и большую выходную мощностью при которой производились измерения, выглядит очень хорошо. Высокочастотная составляющая при данной выходной мощности (250Вт), так же незначительна, имеет более упорядоченный характер и не превышает 0,2В, что является хорошим результатом.

Установка порога срабатывания защиты. Порог при котором будет происходить срабатывание защиты задается резистором RCS (R5 - в SE 2, R6 - в SE 3 и SE 4).

Данный резистор может быть как выводным, так и SMD формата 2512. RCS может быть набран из нескольких параллельно соединенных резисторов.
Номинал RCS рассчитывается по формуле: Rcs = 32 / Pном. Где, Pном - выходная мощность ИИП, при превышении которой сработает защита от перегрузки.
Пример: допустим что нам необходимо чтобы защита от перегрузки срабатывала при превышении выходной мощности 275Вт. Рассчитываем номинал резистора: Rcs=32/275=0,116 Ом. Можно использовать либо один резистор на 0,1Ом, либо два резистора по 0,22Ом включенных параллельно (что в результате даст 0,11Ом), либо три резистора по 0,33Ом, так же включенных параллельно (что в результате даст 0,11Ом).

Теперь настало время затронуть самую интересующую народ тему - расчет трансформатора для импульсного блока питания . По вашим многочисленным просьбам я наконец подробно расскажу как это сделать.

В первую очередь нам потребуется сердечник с каркасом, либо просто сердечник, если это сердечник кольцевой формы (форма R).

Сердечники и каркасы могут быть совершенно разной конфигурации, можно применять любою. Я использовал сердечник с каркасом ER35 из компьютерного блока питания. Самое важно чтобы сердечник не имел зазора, сердечники с зазором применять нельзя.

По умолчанию, сразу после запуска программы, вы увидите подобные цифры.
Начиная расчет, первое что мы сделаем - выберем форму и размеры сердечника в верхнем правом углу окна программы. В моем случае форма ER, а размеры 35/21/11.

Размеры сердечника можно измерить самостоятельно, как это сделать, легко понять из следующей иллюстрации:

Далее выбираем материал сердечника. Хорошо если вы знаете из какого материала изготовлен именно ваш сердечник, если нет, то ничего страшного, просто выбирайте вариант по умолчанию - N87 Epcos. В наших условиях, выбор материала не окажет существенного влияния на конечный результат.

Следующим шагом выбираем схему преобразователя, она у нас - полумостовая:

В следующей части программы - "напряжение питания", выбираем "переменное" и во всех трех окошках указываем 230В.

В части "характеристики преобразователя", указываем необходимое нам двухполярное выходные напряжения (напряжение одного плеча) и требуемую выходную мощность ИИП, а так же диаметр провода, которым вы хотите намотать вторичные и первичную обмотки. Кроме этого, выбирается тип используемого выпрямителя - "двухполярн. со средней точкой". Там же ставим галочку "использовать желаемые диаметры" и под "стабилизация выходов" выбираем - "нет". Выбираем тип охлаждения: активное с вентилятором или пассивное без него. В итоге у вас должно получиться что-то подобное:

Реальные значения выходных напряжений, получатся больше чем вы укажите в программе при расчете. В данном случае, при указанном в программе напряжении 2х45В, на выходе реального ИИП получится примерно 2х52В, поэтому при расчете рекомендую указывать напряжение меньше необходимого на 3-5В. Либо указывать необходимое выходное напряжения, но наматывать на один виток меньше чем указано в результатах расчета программы. Выходная мощность не должна превышать 350Вт (для 2161 SE 4). Диаметр провода для намотки, можно использовать любой какой есть у вас в наличии, необходимо измерить и указать его диаметр. Не стоит наматывать обмотки проводом с диаметром более 0,8мм, лучше наматывать обмотки используя несколько (два, три и более) тонких проводов, чем один толстый провод.

После всего этого, нажимаем на кнопку "рассчитать" и получаем результат, в моем случае получилось следующее:

Основное внимание обращаем на выделенные красном пункты. Первичная обмотка в моем случае будет состоять из 41 витка, намотанных в два провода диаметром по 0,5мм каждый. Вторичная обмотка состоит из двух половин по 14 витков, намотанных в три провода диаметром 0,5мм каждый.

После получения всех необходимых расчетных данных переходим непосредственно к намотке трансформатора.
Тут, как мне кажется, ничего сложного нет. Расскажу как это делаю я. Сначала наматывается первичная обмотка целиком. Зачищается один из концов провода (проводов) и припаивается к соответствующему выводу каркаса трансформатора. После чего начинается намотка. Наматывается первый слой после чего накладывается тонкий слой изоляции. После чего наматывается второй слой и снова накладывается тонкий слой изоляции и таким образом наматывается все необходимое число витков первичной обмотки. Наматывать обмотки лучше всего виток к витку, но можно и косо-криво или просто "абы как", заметной роли это не сыграет. После того, как нужное число витков намотано, откусывается конец провода (проводов), конец провода зачищается и припаивается к другому соответствующему выводу трансформатора. После намотки первичной обмотки, на нее накладывается толстый слой изоляции. В качестве изоляции лучше всего использовать специальную лавсановую ленту:

Такой же лентой изолируют обмотки импульсных трансформаторов компьютерных блоков питания. Эта лента хорошо проводит тепло и имеет высокую термостойкость. Из подручных материалов можно посоветовать использовать: ФУМ ленту, малярный скотч, бумажный пластырь или рукав для запекания разрезанный на длинные полосы. Использоваться для изоляции обмоток ПВХ и матерчатую изоленту, канцелярский скотч, матерчатый пластырь - категорически нельзя.

После того как первичная обмотка намотана и изолированна, переходим к намотке вторичной обмотки. Некоторые наматывают одновременно сразу две половины обмотки, а потом разделяют их, но я же мотаю половинки вторичной обмотки по очереди. Вторичная обмотка мотается таким же образом как и первичная. Сначала зачищаем и припаиваем один конец провода (проводов) к соответствующему выводу каркаса трансформатора, наматываем нужное количество витков, накладывая изоляцию после каждого слоя. Намотав нужное количество витков одной половины вторичной обмотки, зачищаем и припаиваем конец провода к соответствующему выводу каркаса и накладываем тонкий слой изоляции. Начало провода следующей половины обмотки припаиваем к тому же выводу, что и конец предыдущей половины обмотки. Наматываем в том же направлении, такое же количество витков как у предыдущей половины обмотки, накладывая изоляцию после каждого слоя. Намотав нужное количество витков, припаиваем конец провода к соответствующему выводу каркаса и накладываем тонкий слой изоляции. Накладывать толстый слой изоляции после намотки вторичной обмотки не нужно. На этом намотку можно считать оконченной.

После завершения намотки, необходимо вставить сердечник в каркас и склеивать половинки сердечника. Для склейки я использую секундный супер-клей. Слой клея должен быть минимальным чтобы не создавать зазора между частями сердечника. В случае если у вас кольцевой сердечник (форма R), то естественно ничего клеить не придется, но процесс намотки будет менее удобным, отнимет больше сил и нервов. Кроме того кольцевой сердечник менее удобен из-за того, что придется самому создавать и формовать выводы трансформатора, а также продумывать крепление готового трансформатора к печатной плате.

По завершении намотки и сборки трансформатора должно получится что-то такое:

Для удобства повествования, добавлю и сюда схему ИИП 2161 SE 4, чтобы кратко рассказать об элементной базе и возможных заменах .

Пойдем по порядку - от входа к выходу. По входу сетевое напряжение встречается с предохранителем F1, предохранитель может иметь номинал от 3,15А до 5А. Варистор RV1 должен быть рассчитан на 275В, такой варистор будет иметь маркировку 07K431, но допускается так же использовать вариаторы 10K431 или 14K431. Использовать варистор с более высоким пороговым напряжением тоже можно, но эффективность защиты и подавления помех будет заметно ниже. Конденсаторы С1 и С2 могут быть как обычные пленочные (типа CL-21 или CBB-21), так и помехоподавляющего типа (например X2) на напряжение 275В. Сдвоенный дроссель L1 выпаиваем из компьютерного блока питания или другой неисправной техники. Дроссель можно изготовить самостоятельно намотав 20-30 витков на небольшом кольцевом сердечнике, проводом с диаметром 0,5 - 0,8мм. Диодный мост VDS1 может быть любой на ток от 6 до 8А, например указанный на схеме - KBU08 (8А) или RS607 (6А). В качестве VD4 подойдет любой медленный или быстрый диод с током от 0,1 до 1А и обратным напряжением не менее 400В. R1 может состоять как из четырех полуваттных резисторов по 82кОм, так и быть одним двухваттным резистором с тем же сопротивлением. Стабилитрон VD1 должен иметь напряжение стабилизации в диапазоне 13 - 14В, допускается использовать как один стабилитрон, так и последовательное соединение двух стабилитронов с меньшим напряжения. С3 и С5 могут быть как пленочными, так и керамическими. С4 должен иметь емкость не более 47мкФ, напряжение 16-25В. Диоды VD2, VD3, VD5 обязательно должны быть очень быстрыми, например - HER108 или SF18. С6 может быть как пленочным, так и керамическим. Конденсатор С7 должен быть рассчитан на напряжение не менее 1000В. С9 может быть как пленочным, так и керамическим. Номинал R6 должен быть рассчитан под требуемую выходную мощность, об том написано выше. В качестве R6 можно использовать как SMD резисторы формата 2512, так и выводные одно- или двух- ваттные резисторы, в любом случае резистор (резисторы) устанавливаются под платой. Конденсатор С8 должен пленочным (типа CL-21 или CBB-21) и иметь допустимое рабочее напряжение не менее 400В. С10 электролитический конденсатор на напряжение не менее 400В, от его емкости зависит величина низкочастотных пульсаций на выходе ИИП. RT1 - термистор, можно купить, а можно выпаять из компьютерного блока питания, сопротивление его должно быть от 10 до 20 Ом и допустимый ток не менее 3А. В качестве транзисторов VT1 и VT2 могут использоваться как указанные на схеме IRF740, так и другие транзисторы со схожими параметрами, например - IRF840, 2SK3568, STP10NK60, STP8NK80, 8N60, 10N60. Конденсаторы С11 и С13 должны быть пленочными (типа CL-21 или CBB-21) с допустимым напряжением не менее 400В, их емкость не должна превышать указанных на схеме 0,47мкФ. С12 и С14 - керамические, высоковольтные конденсаторы на напряжение не менее 1000В. Диодный мост VDS2 состоит из четырех диодов включенных мостом. В качестве диодов VDS2 необходимо использовать очень быстрые и мощные диоды, например такие как - MUR1520 (15А, 200В), MUR1560 (15А, 600В), MUR820 (8А, 200В), MUR860 (8А, 600В), BYW29 (8А, 200В), 8ETH06 (8А, 600В), 15ETH06 (15А, 600В). Дроссели L2 и L3 выпаиваются из компьютерного блока питания или изготавливаются самостоятельно. Они могут быть намотаны как на отдельных ферритовых стержнях, так и на общем кольцевом сердечнике. Каждый из дросселей должен содержать от 5 до 30 витков (больше - лучше), проводом с диаметром 1 - 1,5мм. Конденсаторы C15, C17, C18, C20 должны быть пленочными (типа CL-21 или CBB-21) с допустимым напряжением 63В и более, емкость может быть любой, чем больше будет их емкость - тем лучше, тем сильнее подавление высокочастотных помех. Каждый из конденсаторов обозначенных на схеме как C16 и C19, состоит из двух электролитических конденсаторов по 1000мкФ 50В. В вашем случае может потребоваться использовать более высоковольтные конденсаторы.

И в качестве завершающего аккорда, покажу фотографию, которая отображает эволюцию созданных мною импульсных блоков питания. Каждый следующий ИИП меньше, мощнее и качественнее предыдущего:

На этом все! Спасибо за внимание!

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Импульсный Источник Питания 2161 SE 4
R1 Резистор

82 кОм

4 0,5Вт В блокнот
R2 Резистор

4.7 Ом

1 0,25Вт В блокнот
R3, R4 Резистор

33 Ом

2 0,25Вт В блокнот
R5 Резистор


THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама