THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Доктор физико-математических наук А. МОРОЗОВ.

В Политехническом музее Москвы хранится уникальный экспонат - двигательная установка малой тяги с питанием от солнечных батарей, созданная в Институте атомной энергии им. И. В. Курчатова под руководством профессора Алексея Ивановича Морозова. Реактивную тягу этого стационарного плазменного двигателя (СПД) создает не поток газов или продуктов химической реакции топлива с окислителем, а плазма, разогнанная электромагнитным полем. Двигатели такого рода предназначены для перехода искусственных спутников Земли с одной орбиты на другую, стабилизации на орбите и других целей. Стационарные плазменные двигатели получили высокую оценку и за рубежом. СПД - единственная отечественная разработка, представленная в отделе космонавтики парижского Дома науки и техники.

Американский ракетный комплекс "Сатурн - Аполлон" при стартовой массе 2900 тонн выводит в космос только 129 тонн.

Стенд в Доме науки и техники (Париж), посвященный стационарным плазменным двигателям и их создателю - А. И. Морозову.

ПЛАЗМЕННЫЙ ДВИГАТЕЛЬ. Так устроен стационарный плазменный двигатель (СПД).

Наука и жизнь // Иллюстрации

НЕСОРАЗМЕРНОСТЬ ЗАДАЧ И СРЕДСТВ

При запусках искусственных спутников Земли постоянно возникает одна и та же ситуация. Спутник выводится на первоначальную, опорную орбиту высотой около 150 километров. Далее его нужно перевести на рабочую орбиту, скажем, геостационарную, на высоту 36 тысяч километров. Для этого включают двигатель, который и производит нужный маневр, проработав некоторое время. Оценить произведенную им работу можно через понятие так называемой характеристической скорости. Суть его заключается в следующем.

Предположим, что имеются два абсолютно одинаковых аппарата: один, скажем, на орбите возле Земли, другой - в абсолютно пустом пространстве, без полей тяготения и других воздействий. Они одновременно включают двигатели, работающие в совершенно одинаковом режиме. Первый аппарат совершает маневры, садится на Луну, возвращается и вообще делает все, что требуется. А второй движется по прямой, не маневрирует, но его двигатель все время работает в том же режиме, что и у первого. В конце концов этот аппарат приобретает некую скорость, которая и называется характеристической. Она-то и определяет эффективность двигателя в данных условиях. Поскольку для каждого полета она своя, можно, сделав несложные расчеты, сразу и с большой точностью оценить, во сколько обойдется каждый маневр.

В 1897 году К. Э. Циолковский вывел для величины характеристической скорости несложную формулу:

V = w lnM 0 /M 1 ,

где w - скорость истечения газов из сопла реактивного двигателя, M 0 - начальная масса аппарата, M 1 - его конечная масса.

Из формулы видно, что разгонять аппарат до скорости V, большей скорости истечения w, за счет увеличения выбрасываемой массы крайне невыгодно. Если на долю топлива приходится 0,9 всей массы ракеты и, следовательно, конечная масса составляет 0,1 массы начальной (M 0 /M 1 = 10), характеристическая скорость V = 2,3w . Когда это отношение масс уменьшается до 0,01, скорость возрастает только в два раза, и, даже сделав M 0 /M 1 = 0,001, удастся получить всего V = 6,9w : величина логарифма растет очень медленно. Поэтому во время полета приходится катастрофически уменьшать массу аппарата: вспомним, как выглядят тяжелая ракета-носитель на старте и спускаемый аппарат в конце полета. Этот путь в принципе возможен, но для высоких скоростей практически неосуществим.

Остается второй вариант: увеличить скорость истечения реактивных газов. Характеристическая скорость зависит от нее линейно, то есть пропорционально. Она вырастет во столько же раз, во сколько увеличится скорость истечения газов.

Современные реактивные двигатели работают, как правило, за счет химической реакции соединения компонентов топлива и окислителя. Чем больше энергии выделяется в ходе этой реакции, тем выше скорость истечения из сопла двигателя ее газообразных продуктов одинаковой массы. Почти предельную энергию обеспечивает реакция кислорода с водородом (больше дает только фтор, особенно атомарный, с водородом; но и сам окислитель, и фтористый водород невероятно химически активны и агрессивны). Однако и она неспособна создать потоки со скоростями больше 4-5 км/с. Для современной космической техники этого во многих случаях недостаточно.

Чтобы вывести спутник на круговую орбиту, носитель должен развить скорость около 8 км/с; чтобы отойти от Земли в космическое пространство - более 11 км/с; соответствующие характеристические скорости будут процентов на тридцать выше. И если скорость истечения газов сделать порядка характеристической скорости для данного маневра, конечная масса аппарата будет соизмерима с массой начальной. Она может быть меньше пусть даже в два-три раза, а не в десятки и сотни, как сегодня. Для этого нужны другие двигатели, основанные не на химических реакциях, а на других процессах. Они потребуют новых источников энергии, ибо, чем выше скорость истечения рабочего вещества, тем больше энергии требуется на единицу тяги:

P /F = w /2η,

где Р - мощность двигателя в ваттах, F - сила тяги в ньютонах, w - скорость истечения в м/с, η - коэффициент полезного действия.

В космосе есть только два источника энергии - Солнце и ядерные реакции.

Внутриядерную энергию получают либо из реакций деления тяжелых элементов, либо путем синтеза элементов легких. Реакция синтеза способна дать колоссальное количество энергии, но управлять ею в ближайшее время вряд ли научатся. Остаются реакторы, основанные на делении, а для маленьких аппаратов - изотопные батареи. Ядерная энергетика, однако, себя сильно скомпрометировала и нажила множество противников.

На внутренних орбитах источником энергии может служить Солнце. Был, например, проект использовать бортовые зеркала-концентраторы, собирающие солнечную энергию на теплообменнике с водородом. Нагретый до 2000 о газ потечет из сопла реактивного двигателя со скоростью порядка 10 км/с, что уже вполне достаточно для маневра в околоземном пространстве. Однако такая система громоздка и ненадежна, поэтому основным источником электроэнергии на борту пока остаются солнечные батареи. Если в 60-х годах киловатт мощности снимался с панели массой около центнера, то сегодня "рекордные" устройства дают ту же мощность с 20 килограммов массы. В целом же бортовые батареи дают суммарную мощность не выше 20 кВт и остаются достаточно эффективными только сравнительно недалеко от Солнца - внутри орбиты Марса или пояса астероидов. Интенсивность света сильно падает с расстоянием (I ~ R -2), и для полетов к удаленным планетам волей-неволей придется использовать реакторы. Ибо переход на скорости истечения газов, соизмеримые с характеристическими, - абсолютно неизбежный путь развития космонавтики.

ЭЛЕКТРИЧЕСКАЯ ЭНЕРГИЯ ВМЕСТО ХИМИЧЕСКОЙ

Чтобы поднять с Земли и разогнать до первой космической скорости огромный космический аппарат, требуются мощности в миллионы и десятки миллионов киловатт. На этом этапе никаких реальных альтернатив реактивным двигателям на химическом топливе пока нет. Но если аппарат уже выведен на орбиту, им вполне можно управлять при помощи двигателей малой мощности. Они могут поддерживать ориентацию спутника, стабилизировать его на орбите, переводить с одной орбиты на другую.

Существует несколько конструкций таких двигателей. В настоящее время, например, созданы хорошие модели так называемых электронагревных двигателей. Газ - аммиак или гидразин - пропускают через катализатор, который его разлагает на молекулы, и нагревают изотопным источником тепла или электрической печкой. Молекулы имеют гораздо меньшую массу и при нагреве приобретают более высокую скорость. Но есть и другой путь: получить направленный поток не молекул, а ионов или плазмы, разогнав их при помощи электрических и магнитных полей.

Путь этот чрезвычайно перспективен. Элементарные расчеты показывают, что ион водорода, пройдя разность потенциалов 4,5 вольта (напряжение батарейки "Крона" в два раза выше), приобретет скорость 30 км/с - гораздо большую, чем может дать химическая реакция. Неудивительно, что в начале 60-х годов, после запуска первого искусственного спутника Земли, работы по созданию электрореактивных двигателей развернулись сразу во многих странах, но ведущими оставались СССР и США. В нашей стране были созданы очень сильные научные коллективы, среди которых особенно выделилась группа из Института атомной энергии. Ей удалось найти интересные научные решения, благодаря которым мы до сих пор удерживаем лидирующее положение в этой области, а созданные ею стационарные плазменные двигатели (СПД) признаны лучшими в мире.

КАК РАБОТАЕТ СПД

Ускорение ионов в полях позволяет получить скорости, которые решают все проблемы обозримого будущего космонавтики. Оставалось эту принципиальную возможность реализовать в металле. Для этого есть два пути.

Можно взять два электрода и приложить к ним постоянное напряжение. Пусть на одном будет напряжение +4,5 вольта, а потенциал второго (катода) будем считать нулевым. Положительный электрод (анод) соединен с ионизатором газа. Ионы, вышедшие из него через отверстие в аноде, начнут ускоряться в электрическом поле, устремляясь к электроду с нулевым потенциалом. Если в нем сделать отверстие, ионы пролетят сквозь него в пространство со скоростью 30 км/с. А электроны, оставшиеся в ионизаторе, уходят через электрическую цепь и источник питания на катод. Эта система получила название ионный двигатель: в зоне его ускорения находятся только ионы.

На самом же деле водородных ионных двигателей на 4,5 вольта нет. Причина этого одна: в ускоряющем промежутке невозможно получить высокую плотность частиц. Ионы создают в нем довольно большой объемный заряд, который быстро экранирует потенциал нулевого электрода и "запирает" поток. Чтобы обеспечить достаточно большой ток, нужно создать высокую напряженность поля, как можно сильнее сдвинув электроды. Но предельное расстояние между ними ограничено долями миллиметра: в слишком узком зазоре возникнет пробой. Скорость наращивать тоже нельзя: это ведет к повышению энергетических затрат на единицу тяги. Поэтому в таком двигателе используют тяжелые частицы - ионы ксенона, ртути или цезия, работают при напряжении порядка тысячи вольт и получают довольно приличный ток и сравнительно большую тягу.

Второй путь - плазменные двигатели, где в зоне ускорения имеются и электроны, и ионы. Рассмотрим подробнее, как они работают.

Наиболее существенный недостаток ионных двигателей - появление объемного заряда в ускоряющем промежутке. Казалось бы, этого можно избежать, поместив в него электроны и получив квазинейтральную плазму. Однако в электрическом поле сразу же начнут ускоряться более легкие электроны, причем до скоростей в тысячи и десятки тысяч километров в секунду. Это в сотни раз больше, чем нам нужно.

Чтобы преодолеть подвижность электронов, их нужно к чему-то "привязать". Это легко сделать, создав в промежутке магнитное поле, перпендикулярное электрическому. В магнитном поле заряженные частицы вращаются по круговой, так называемой ларморовской, орбите. У электронов ее диаметр в наших условиях - десятые доли миллиметра, а у ионов - порядка метра. Ионы практически не чувствуют магнитного поля, движутся только под действием поля электрического и с большой скоростью покидают двигатель. Таким образом, система превращается в ускоритель ионов, в котором мешающего объемного заряда нет.

На первый взгляд плазменный двигатель - очень простое устройство. Это кольцевой электромагнит, в зазор которого помещена камера (ее называют также каналом) из диэлектрического материала. В глубине камеры расположен анод. Снаружи, возле среза камеры, расположен катод-нейтрализатор. Рабочее вещество (ксенон) поступает в канал и вблизи анода ионизуется. Ионы ускоряются в электрическом поле и вылетают из двигателя, создавая реактивную тягу. А электроны, как и в ионном двигателе, попадают на анод, проходят по цепи до катода-нейтрализатора и поступают в ионный поток, нейтрализуя и его, и двигатель. Делать это абсолютно необходимо - в противном случае спутник, выбрасывая положительные ионы из двигателя, приобрел бы отрицательный потенциал большой величины.

СПД НА ЗЕМЛЕ И В КОСМОСЕ

Наша страна продолжает лидировать в области конструирования электроракетных систем. Стационарные плазменные двигатели стоят почти на шестидесяти отечественных спутниках в качестве двигателей коррекции. Они подстраивают положение спутника на орбите и в принципе могут перевести его, скажем, с опорной орбиты на высоте 150 - 200 километров на геостационарную орбиту высотой 36 тысяч километров. Для этой операции понадобятся три-четыре месяца непрерывной работы, за которые будет выброшено всего-навсего десять килограммов вещества. Специалисты считают, что в ближайшие два-три года начнется настоящий бум использования электроракетных двигателей и для коррекции орбит искусственных спутников Земли, и для полетов на другие планеты. Для всех этих работ СПД незаменимы; они будут стоять и на автоматической станции, которую по программе Российской академии наук запустят к спутнику Марса Фобосу в самом начале третьего тысячелетия. А вот для ориентации космического аппарата они слишком мощны, для этого нужны совсем миниатюрные конструкции.

И для решения чисто земных задач поле деятельности плазменных двигателей огромно. Уже сейчас СПД в соответствующем исполнении используются для обработки различных поверхностей - из металла, стекла, полупроводников. Но, по-видимому, область их применения, а точнее - принципов, в них заложенных, будет несравненно шире, тем более, что мощность подобных систем может быть увеличена в тысячи раз. И в первую очередь связано это с принципиально новым их конструктивным элементом - прозрачными магнито-электронными электродами, которые во многих случаях могут заменить электроды твердотельные.

Подробности для любознательных

ИСТОРИЯ ПЛАЗМЕННЫХ ДВИГАТЕЛЕЙ

Первые предпосылки для создания плазменно-ионных двигателей возникли более ста лет назад.

В конце прошлого века начались интенсивные работы по изучению газов при помощи электрического разряда. Исследуемый газ под невысоким давлением помещался в стеклянную трубку с впаянными электродами - анодом и катодом. При дальнейшем снижении давления в трубке стали видны лучи, исходящие из катода. Детальное исследование показало, что эти "катодные лучи" - поток электронов.

В 1886 году обнаружилось еще одно интересное явление. Если в плоском катоде проделать отверстия ("каналы"), то через них в обратном направлении протянутся другие лучи, которые назвали каналовыми. Это были потоки ионизованных атомов газа. Однако в то время, разумеется, никто не предполагал, что их можно использовать для получения реактивной тяги.

Первый эффективный ионный двигатель был создан американцем Г. Кауфманом в 60-х годах и использован в космическом эксперименте Sert-II. В двигателях этого типа имеются ионизационная камера с электрическим разрядником и ускоряющий электрод в виде пластины с отверстиями. Рабочий газ (скажем, ксенон) поступает в камеру, где его атомы распадаются на электроны и положительно заряженные ионы. Поток ионов выходит из камеры и ускоряется под действием напряжения, приложенного к дырчатому электроду. Электроны проходят по цепи питания двигателя и поступают на нейтрализатор, стоящий на пути ионного пучка. Ионы, удаляясь от двигателя, увлекают их за собой.

Примерно в это же время в нашей стране был создан плазменно-эрозионный двигатель конструкции А. М. Андрианова. Он стал первым устройством такого типа, выведенным в космос: в 1964 году его установили на аппарате "Зонд-2" в качестве двигателя ориентации с питанием от солнечных батарей.

Двигатель выполнен в виде двух цилиндрических коаксиальных электродов, разделенных изолятором. К центральному электроду подведена поджигающая игла, соединенная с конденсаторной батареей. При разряде конденсатора между иглой и электродом происходит разряд, вызывающий их испарение (эрозию) и ионизацию. Эта "затравочная" плазма поступает в промежуток между электродами, на которые подано высокое напряжение основной конденсаторной батареи. Появление плазмы инициирует поверхностный разряд, который испаряет материал изолятора и ионизует его молекулы. Нагрев и взаимодействие тока с собственным магнитным полем ускоряют плазму.

К середине 60-х годов в нашей стране были получены обнадеживающие результаты по разработке плазменных двигателей разных типов. Но наибольший успех пришел к группе из Института атомной энергии им. И. В. Курчатова, которой руководили А. И. Морозов и Г. Я. Щепкин. Этот коллектив к маю 1969 года создал работающий макет двигательной установки. После конструкторской доработки в ОКБ "Факел" двигатель в последних числах 1970 года был установлен на спутнике "Метеор"и выведен на орбиту. С тех пор прошло почти тридцать лет, но этот стационарный плазменный двигатель (СПД) все еще не имеет конкурентов - другие схемы оказались менее эффективными и штатной принадлежностью космических аппаратов не стали.

В середине 80-х годов работы над СПД из Института атомной энергии были переведены в Московский институт радиотехники, электроники и автоматики (МИРЭА) и продолжены в лаборатории профессора Антонины Ивановны Бугровой. В 1992 году лабораторию посетил вице-президент франко-европейской космической фирмы SEP г-н Буланже. Он предложил заключить контракт на создание патентно чистой модели СПД с улучшенными характеристиками.

Дело в том, что двигатели имеют два существенных недостатка: большую расходимость плазменного пучка (до 45 о) и кпд порядка 50%, что было меньше их возможностей. И была у них одна странность: наиболее сильная тяга получалась при геометрии полей, с точки зрения теории далекой от оптимальной. Когда причины такого поведения удалось понять, сотрудники лаборатории МИРЭА изменили конфигурацию канала, анода и магнитного поля. Это сразу же дало удивительные результаты: кпд вырос почти до 70%, а расходимость пучка стала меньше 10 о. Так были созданы СПД второго поколения.

Портал militaryarms.ru сообщает, что еще в 2016 г. на стол фонда перспективных исследований легла заявка, оформленная научно-техническим советом НПО «Энергомаш» и НИЦ «Курчатовский институт». Заявка посвящена реализации довольно амбициозного проекта, который позволит создать безэлектродный плазменный ракетный двигатель. Сокращенно БПРД. Определен четкий состав работ, позволяющих выпустить лабораторный образец двигателя.

По своей сути ЭРД (электрический ракетный двигатель) является электрическим двигателем, у которого рабочее тело способно приобретать ускорение в особом состоянии плазмы. Оригинальная идея плазменных двигателей принадлежит советскому физику Морозову А. И. Он выдвинул ее еще в 60-х. Сегодняшнее применение таких двигателей - поддерживать точки стояния у спутников связи.

Новое поколение плазменных двигателей, которые собираются изготавливать на «Энергомаше», обладают мощностью свыше 100 кВт. Их можно будет использовать не для одних геостационарных спутников. Такие двигатели подходят для полетов, которые характеризуются как межзвездные.

Последние годы в мире отмечены несколькими разработками плазменных двигателей. Их можно отнести к новому поколению. Это геликонный плазменный двигатель от Европейского космического агентства, сотрудничающего с Иранским космическим агентством и Австралийским национальным университетом. Это также разработка канадских инженеров и американцев из Ad Astra Rocket Company. Американо-канадский двигатель имеет мощность в 200 кВт.

Популярная механика

Портал topwar.ru уточнил, что, согласно пресс-службе Роскосмоса. в разработке двигателя примет участие КБ химавтоматики. Сайт цитирует пресс-коммюнике Роскосмоса: «Рассматриваемый в настоящее время вариант безэлектродного плазменного ракетного двигателя является новым поколением ЭРД. Это двигатель высокой мощности, рабочее вещество в котором находится в состоянии плазмы. Он обладает высокой энергетической эффективностью, возможностью использовать в качестве рабочего тела практически любое вещество, способен изменять величину удельного импульса, а максимальная мощность двигателя ограничивается практически только мощностью питания высокочастотного генератора. Также двигатель такого типа потенциально может иметь большой ресурс работы, поскольку снимаются все ограничения, связанные с воздействием энергонасыщенного рабочего вещества с элементами конструкции», - рассказали в пресс-службе.

В завершение хотелось бы сказать, что ни один плазменный двигатель для космических кораблей из существующих в наше время не способен доставить ракету даже к ближайшим звёздам. Это касается как экспериментально проверенных аппаратов, так и теоретически просчитанных.

Многие учёные приходят к пессимистичному заключению - разрыв между нашей планетой и звёздами фатально непреодолим. Даже до системы Альфа Центавра, некоторые компоненты которой видны невооружённым глазом с Земли, а ведь расстояние составляет 39,9 триллиона километров. Даже на космическом аппарате, способном передвигаться со скоростью света, преодоление данного расстояния составило бы около 4,2-4,3 лет.

Так что плазменные агрегаты звездолётов - это, скорей, из сферы научной фантастики. Но это ничуть не преуменьшает их значимость! Их используют в качестве маневровых, вспомогательных и корректирующих орбиты двигателей. Поэтому изобретение вполне оправдано.

А вот ядерный импульсный агрегат, который утилизирует энергию взрывов, имеет вероятный потенциал развития. Во всяком случае, как минимум в теории отправка автоматического зонда в ближайшую звёздную систему является возможной.

Александр Лосев

Быстрое развитие ракетно-космической техники в XX веке было обусловлено военно-стратегическими, политическими и, в определенной степени, идеологическими целями и интересами двух сверхдержав - СССР и США, а все государственные космические программы являлись продолжением их военных проектов, где главной задачей была необходимость обеспечить обороноспособность и стратегический паритет с вероятным противником. Стоимость создания техники и затраты на эксплуатацию тогда не имели принципиального значения. На создание ракет-носителей и космических аппаратов выделялись колоссальные ресурсы, а 108 минут полета Юрия Гагарина в 1961 году и телетрансляция Нила Армстронга и Базза Олдрина с поверхности Луны в 1969 году были не просто триумфами научно-технической мысли, они еще рассматривались как стратегические победы в битвах «Холодной войны».

Но после того как Советский Союз распался и выбыл из гонки за мировое лидерство, у его геополитических противников, прежде всего у США, исчезла необходимость реализовывать престижные, но крайне затратные космические проекты, чтобы доказывать всему миру превосходство западной экономической системы и идеологических концепций.
В 90-х годах основные политические задачи прошлых лет утратили актуальность, блоковое противостояние сменилось глобализацией, в мире возобладал прагматизм, поэтому большинство космических программ было свернуто или отложено, от масштабных проектов прошлого осталась, как наследие, только МКС. К тому же западная демократия поставила все дорогостоящие государственные программы в зависимость от электоральных циклов.
Поддержка избирателей, необходимая для получения или сохранения власти, заставляет политиков, парламенты и правительства склоняться к популизму и решать сиюминутные задачи, поэтому траты на исследования космоса сокращаются год от года.
Большинство фундаментальных открытий было сделано еще в первой половине ХХ века, а в наши дни наука и технологии достигли определенных пределов, к тому же во всем мире снизилась популярность научных знаний, и ухудшилось качество преподавания математики, физики и других естественных наук. Это и стало причиной застоя, в том числе и в космической сфере, последних двух десятилетий.
Но сейчас становится очевидным, что мир приближается к концу очередного технологического цикла, основанного на открытиях прошлого века. Поэтому любая держава, которая будет обладать принципиально новыми перспективными технологиями в момент смены глобального технологического уклада, автоматически обеспечит себе мировое лидерство как минимум на следующие пятьдесят лет.

Принципиальное устройство ЯРД с водородом в качестве рабочего тела

Это осознают и в Соединенных Штатах, где взят курс на возрождение американского величия во всех сферах деятельности, и в Китае, бросающем вызов американской гегемонии, и в Евросоюзе, который всеми силами пытается сохранить свой вес в глобальной экономике.
Там существует промышленная политика и всерьез занимаются развитием собственного научно-технического и производственного потенциала, а космическая сфера может стать наилучшим полигоном для отработки новых технологий и для доказательства или опровержения научных гипотез, способных заложить основу для создания принципиально иной более совершенной техники будущего.
И вполне естественно ожидать, что США будет первой страной, где возобновятся проекты исследования дальнего космоса с целью создания уникальных инновационных технологий как в области вооружений, транспорта и конструкционных материалов, так и в биомедицине и в сфере телекоммуникаций
Правда, ни даже Соединенным Штатам, успех на пути создания революционных технологий не гарантирован. Есть высокий риск оказаться в тупике, совершенствуя ракетные двигатели полувековой давности на основе химического топлива, как это делает компания SpaceX Илона Маска, или, создавая системы жизнеобеспечения длительного перелета похожие на те, что уже реализованы на МКС.
Может ли Россия, чья стагнация в космической сфере с каждым годом становится заметнее, совершить рывок в гонке за будущее технологическое лидерство, чтобы оставаться в клубе сверхдержав, а не в списке развивающихся стран?
Да, безусловно, Россия может, и более того, заметный шаг вперед уже сделан в ядерной энергетике и в технологиях ядерных ракетных двигателей, несмотря на хроническое недофинансирование космической отрасли.
Будущее космонавтики - это использование ядерной энергии. Чтобы понять, как связаны ядерные технологии и космос, необходимо рассмотреть основные принципы реактивного движения.
Итак, основные типы современных космических двигателей созданы на принципах химической энергетики. Это твердотопливные ускорители и жидкостные ракетные двигатели, в их камерах сгорания компоненты топлива (горючее и окислитель) вступая в экзотермическую физико-химическую реакцию горения, формируют реактивную струю, ежесекундно выбрасывающую из сопла двигателя тонны вещества. Кинетическая энергия рабочего тела струи преобразуется в реактивную силу, достаточную для движения ракеты. Удельный импульс (отношение создаваемой тяги к массе используемого топлива) таких химических двигателей зависит от компонентов топлива, давления и температуры в камере сгорания, а также от молекулярной массы газообразной смеси, выбрасываемой через сопло двигателя.
И чем выше температура вещества и давление внутри камеры сгорания, и чем ниже молекулярная масса газа, тем выше удельный импульс, а значит и эффективность двигателя. Удельный импульс - это количество движения, и его принято измерять в метрах в секунду, также как и скорость.
В химических двигателях наибольший удельный импульс дают топливные смеси кислород-водород и фтор-водород (4500–4700 м/с), но самыми популярными (и удобными в эксплуатации) стали ракетные двигатели, работающие на керосине и кислороде, например двигатели «Союзов» и ракет «Falcon» Маска, а также двигатели на несимметричном диметилгидразине (НДМГ) с окислителем в виде смеси тетраоксида азота и азотной кислоты (советский и российский «Протон», французский «Ариан», американский «Титан»). Их эффективность в 1.5 раза ниже, чем у двигателей на водородном топливе, но и импульса в 3000 м/с и мощности вполне достаточно, для того, чтобы было экономически выгодно выводить тонны полезной нагрузки на околоземные орбиты.
Но полеты к другим планетам требуют намного большего размера космических кораблей, чем все, что были созданы человечеством ранее, включая модульную МКС. В этих кораблях необходимо обеспечивать и длительное автономное существование экипажей, и определенный запас топлива и ресурс работы маршевых двигателей и двигателей для маневров и коррекции орбит, предусмотреть доставку космонавтов в специальном посадочном модуле на поверхность иной планеты, и возврат их на основной транспортный корабль, а затем и возвращение экспедиции на Землю.
Накопленные инженерно-технические знания и химическая энергетика двигателей позволяют вернуться на Луну и достигнуть Марса, поэтому велика вероятность, что в следующем десятилетии человечество побывает на Красной планете.
Если опираться только на имеющиеся космические технологии, то минимальная масса обитаемого модуля для пилотируемого полета к Марсу или к спутникам Юпитера и Сатурна составит примерно 90 тонн, что в 3 раза больше, чем лунные корабли начала 1970-х, а значит, ракеты-носители для их выведения на опорные орбиты для дальнейшего полета к Марсу будут намного превосходить «Сатурн-5» (стартовая масса 2965 тонн) лунного проекта «Аполлон» или советский носитель «Энергия» (стартовая масса 2400 тонн). Потребуется создать на орбите межпланетный комплекс массой до 500 тонн. Полет на межпланетном корабле с химическими ракетными двигателями потребует от 8 месяцев до 1 года времени только в одну сторону, потому что придется делать гравитационные маневры, используя для дополнительного разгона корабля силу притяжения планет, и колоссального запаса топлива.
Но используя химическую энергию ракетных двигателей дальше орбиты Марса или Венеры человечество не улетит. Нужны другие скорости полета космических кораблей и иная более мощная энергетика движения.

Современный проект ядерного ракетного двигателя Princeton Satellite Systems

Для освоения дальнего космоса необходимо значительно повысить тяговооруженность и эффективность ракетного двигателя, а значит увеличить его удельный импульс и ресурс работы. А для этого необходимо внутри камеры двигателя нагреть газ или вещество рабочего тела с низкой атомной массой до температур, в несколько раз превосходящих температуру химического горения традиционных топливных смесей, и сделать это можно с помощью ядерной реакции.
Если вместо обычной камеры сгорания внутрь ракетного двигателя поместить ядерный реактор, в активную зону которого будет подаваться вещество в жидком или газообразном виде, то оно, разогреваясь под большим давлением до нескольких тысяч градусов, начнет выбрасываться через канал сопла, создавая реактивную тягу. Удельный импульс такого ядерного реактивного двигателя будет в несколько раз больше, чем у обычного на химических компонентах, а значит многократно увеличится эффективность как самого двигателя, так и ракеты-носителя в целом. Окислитель для горения топлива при этом не потребуется, а в качестве вещества, создающего реактивную тягу, может быть использован легкий газ водород, мы же знаем, что чем меньше молекулярная масса газа, тем выше импульс, а это позволит намного уменьшить массу ракеты при лучших характеристиках мощности двигателя.
Ядерный двигатель будет лучше обычного, поскольку в зоне реактора легкий газ может нагреваться до температур, превышающих 9 тысяч градусов Кельвина, и струя такого перегретого газа обеспечит намного больший удельный импульс, чем могут дать обычные химические двигатели. Но это в теории.
Опасность даже не в том, что при старте ракеты-носителя с такой ядерной установкой может произойти радиоактивное загрязнение атмосферы и пространства вокруг пусковой площадки, основная проблема, что при высоких температурах может расплавиться сам двигатель вместе с космическим кораблем. Конструкторы и инженеры это понимают и уже несколько десятилетий пытаются найти подходящие решения.
У ядерных ракетных двигателей (ЯРД) есть уже своя история создания и эксплуатации в космосе. Первые разработки ядерных двигателей начались в середине 1950-х годов, то есть еще до полета человека в космос, и практически одновременно и в СССР и в США, а сама идея использовать ядерные реакторы для нагрева рабочего вещества в ракетном двигателе родилась вместе с первыми ректорами в середине 40-х годов, то есть больше 70 лет назад.
В нашей стране инициатором создания ЯРД стал ученый-теплофизик Виталий Михайлович Иевлев. В 1947 году он представил проект, который был поддержан С. П. Королевым, И. В. Курчатовым и М. В. Келдышем. Изначально планировалось использовать такие двигатели для крылатых ракет, а затем ставить и на баллистические ракеты. Разработкой занялись ведущие оборонные КБ Советского Союза, а также научно-исследовательские институты НИИТП, ЦИАМ, ИАЭ, ВНИИНМ.
Советский ядерный двигатель РД-0410 был собран в середине 60-х воронежском «Конструкторском бюро химавтоматики», где создавалось большинство жидкостных ракетных двигателей для космической техники.
В качестве рабочего тела в РД-0410 использовался водород, который в жидком виде проходил через «рубашку охлаждения», отводя лишнее тепло от стенок сопла и не давая ему расплавиться, а затем поступал в активную зону реактора, где нагревался до 3000К и выбрасывался через канал сопла, преобразуя, таким образом, тепловую энергию в кинетическую и создавая удельный импульс в 9100 м/с.
В США проект ЯРД был запущен в 1952 году, а первый действующий двигатель был создан в 1966 году и получил название NERVA (Nuclear Engine for Rocket Vehicle Application). В 60-х - 70-х годах Советский Союз и США старались не уступать друг другу.
Правда и наш РД-0410, и американский NERVA были твердофазными ЯРД, (ядерное топливо на основе карбидов урана находилось в реакторе в твердом состоянии), и их рабочая температура была в пределах 2300–3100К.
Чтобы увеличить температуру активной зоны без риска взрыва или расплавления стенок реактора, необходимо создать такие условия ядерной реакции, при которых топливо (уран) переходит в газообразное состояние или превращается в плазму и удерживается внутри реактора за счет сильного магнитного поля, не касаясь при этом стенок. А дальше водород, поступающий в активную зону реактора, «обтекает» находящийся в газовой фазе уран, и превращаясь в плазму, с очень высокой скоростью выбрасывается через канал сопла.
Этот тип двигателя получил название газофазного ЯРД. Температуры газообразного уранового топлива в таких ядерных двигателях могут находиться в диапазоне от 10 тысяч до 20 тысяч градусов Кельвина, а удельный импульс достигать 50000 м/с, что в 11 раз выше, чем у самых эффективных химических ракетных двигателей.
Создание и использование в космической технике газофазных ЯРД открытого и закрытого типов - это наиболее перспективное направление развития космических ракетных двигателей и именно то, что необходимо человечеству для освоения планет Солнечной системы и их спутников.
Первые исследования по проекту газофазного ЯРД начались в СССР в 1957 году в НИИ тепловых процессов (НИЦ имени М. В. Келдыша), а само решение о разработке ядерных космических энергоустановок на основе газофазных ядерных реакторов было принято в 1963 году академиком В. П. Глушко (НПО Энергомаш), а затем утверждено постановлением ЦК КПСС и Совета министров СССР.
Разработка газофазного ЯРД велась в Советском Союзе два десятилетия, но, к сожалению, так и не была завершена из-за недостаточного финансирования и необходимости дополнительных фундаментальных исследований в области термодинамики ядерного горючего и водородной плазмы, нейтронной физики и магнитной гидродинамики.
Советские ученые-ядерщики и инженеры-конструкторы столкнулись с рядом проблем, таких как достижение критичности и обеспечение устойчивости работы газофазного ядерного реактора, снижение потерь расплавленного урана при выбросе водорода, разогретого до нескольких тысяч градусов, теплозащита сопла и генератора магнитного поля, накопление продуктов деления урана, выбор химически стойких конструкционных материалов и пр.
А когда для советской программы «Марс-94» первого пилотируемого полета на Марс начала создаваться ракета-носитель «Энергия», проект ядерного двигателя был отложен на неопределенный срок. Советскому Союзу не хватило совсем немного времени, а главное политической воли и эффективности экономики, чтобы осуществить высадку наших космонавтов на планету Марс в 1994 году. Это было бы бесспорным достижением и доказательством нашего лидерства в высоких технологиях в течение следующих нескольких десятилетий. Но космос, как и многое другое, был предан последним руководством СССР. Историю уже не изменить, ушедших ученых и инженеров не вернуть, а утраченные знания не восстановить. Очень многое придется создавать заново.
Но космическая ядерная энергетика не ограничивается только сферой твердо- и газофазных ЯРД. Для создания нагретого потока вещества в реактивном двигателе можно использовать электрическую энергию. Эту идею первым высказал Константин Эдуардович Циолковский еще в 1903 году в своей работе «Исследование мировых пространств реактивными приборами».
А первый электротермический ракетный двигатель в СССР был создан в 1930-х годах Валентином Петровичем Глушко - будущим академиком АН СССР и руководителем НПО «Энергия».
Принципы работы электрические ракетных двигателей могут быть различными. Обычно их принято делить на четыре типа:

  • электротермические (нагревные или электродуговые). В них газ нагревается до температур 1000–5000К и выбрасывается из сопла точно также как и в ЯРД.
  • электростатические двигатели (коллоидные и ионные), в которых сначала происходит ионизация рабочего вещества, а затем положительные ионы (атомы, лишенные электронов) ускоряются в электростатическом поле и также выбрасываются через канал сопла, создавая реактивную тягу. К электростатическим относятся также и стационарные плазменные двигатели.
  • магнитоплазменные и магнитодинамические ракетные двигатели. Там газовая плазма ускоряется за счет силы Ампера в пересекающихся перпендикулярно магнитном и электрическом полях.
  • импульсные ракетные двигатели, в которых используется энергия газов, возникающих при испарении рабочего тела в электрическом разряде.

Плюсом этих электрических ракетных двигателей является низкий расход рабочего тела, КПД до 60% и высокая скорость потока частиц, что позволяет значительно сократить массу космического аппарата, но есть и минус - малая плотность тяги, а соответственно низкая мощность, а также дороговизна рабочего тела (инертные газы или пары щелочных металлов) для создания плазмы.
Все перечисленные типы электродвигателей реализованы на практике и многократно использовались в космосе и на советских и на американских аппаратах начиная с середины 60-х годов, но из-за своей малой мощности применялись в основном в качестве двигателей коррекции орбит.
С 1968 по 1988 годы в СССР была запущена целая серия спутников «Космос» с ядерными установками на борту. Типы реакторов носили названия: «Бук», «Топаз» и «Енисей».
Реактор проекта «Енисей» обладал тепловой мощностью до 135 кВт и электрической мощностью порядка 5 кВт. Теплоносителем являлся натрий-калиевый расплав. Этот проект был закрыт в 1996 году.
Для настоящего маршевого ракетного электродвигателя требуется очень мощный источник энергии. И лучшим источником энергии для таких космических двигателей является ядерный реактор.
Ядерная энергетика - одна из высокотехнологичных отраслей, где наша страна сохраняет лидирующие позиции. И принципиально новый ракетный двигатель в России уже создается и этот проект близок к успешному завершению в 2018 году. Летные испытания намечена на 2020 год.
И если газофазный ЯРД - это тема будущих десятилетий к которой предстоит вернуться после проведения фундаментальных исследований, то его сегодняшняя альтернатива - это ядерная энергодвигательная установка мегаваттного класса (ЯЭДУ), и она уже создается предприятиями Росатома и Роскосмоса с 2009 года.
В создании ядерного энергодвигателя и транспортно-энергетического модуля принимают участие НПО «Красная звезда», которое на сегодняшний день является единственным в мире разработчиком и изготовителем космических ядерных энергетических установок, а также Исследовательский центр им. М. В. Келдыша, НИКИЭТ им. Н. А. Доллежаля, «НИИ НПО «Луч», «Курчатовский институт», ИРМ, ФЭИ, НИИАР и НПО Машиностроения.
Ядерная энергодвигательная установка включает в себя высокотемпературный газоохлаждаемый ядерный реактор на быстрых нейтронах с системой турбомашинного преобразования тепловой энергии в электрическую, систему холодильников-излучателей для отвода избыточного тепла в космос, приборно-агрегатный отсек, блок маршевых плазменных или ионных электродвигателей и контейнер для размещения полезной нагрузки.
В энергодвигательной установке ядерный реактор служит источником электроэнергии для работы электрических плазменных двигателей, при этом газовый теплоноситель реактора, проходящий через активную зону, попадает в турбину электрогенератора и компрессора и возвращается обратно в реактор по замкнутому контуру, а не выбрасывается в пространство как в ЯРД, что делает конструкцию более надежной и безопасной, а значит пригодной для пилотируемой космонавтики.
Планируется, что ядерная энергодвигательная установка будет применяться для многоразового космического буксира для обеспечения доставки грузов при освоении Луны или создания многоцелевых орбитальных комплексов. Плюсом будет являться не только многоразовое использование элементов транспортной системы (чего пытается добиться Илон Маск в своих космических проектах SpaceX), но и возможность доставки в три раза большей массы грузов, чем на ракетах с химическими реактивными двигателями сопоставимой мощности за счет уменьшения стартовой массы транспортной системы. Особая конструкция установки делает ее безопасной для людей и окружающей среды на Земле.
В 2014 году на ОАО «Машиностроительный завод» в г. Электросталь был собран первый тепловыделяющий элемент (твэл) штатной конструкции для этой ядерной электродвигательной установки, а в 2016 проведены испытания имитатора корзины активной зоны реактора.
Сейчас (в 2017 году) ведутся работы по изготовлению элементов конструкции установки и тестирование узлов и агрегатов на макетах, а также автономные испытания систем турбомашинного преобразования энергии и прототипов энергоблоков. Завершение работ запланировано на конец следующего 2018 года, правда, с 2015 года начало накапливаться отставание от графика.
Итак, как только эта установка будет создана, Россия станет первой в мире страной обладающей ядерными космическими технологиями, которые лягут в основу не только будущих проектов освоения Солнечной системы, но и земной и внеземной энергетики. Космические ядерные энергетические установки можно будет использовать для создания систем дистанционной передачи электроэнергии на Землю или на космические модули с помощью электромагнитного излучения. И это тоже станет передовой технологией будущего, где наша страна будет иметь лидирующие позиции.
На основе разрабатываемых плазменных электродвигателей будут созданы мощные двигательные установки для дальних полетов человека в космос и в первую очередь для освоения Марса, достичь орбиты которого можно будет всего за 1,5 месяца, а не за год с лишним, как при использовании обычных химических реактивных двигателей.
А будущее всегда начинается с революции в энергетике. И никак иначе. Энергетика первична и именно величина энергопотребления влияет на технический прогресс, на обороноспособность и на качество жизни людей.

Экспериментальный плазменный ракетный двигатель NASA

Советский астрофизик Николай Кардашёв еще в 1964 году предложил шкалу развития цивилизаций. Согласно этой шкале уровень технологического развития цивилизаций зависит от количества энергии, которое население планеты использует для своих нужд. Так цивилизация I типа использует все доступные ресурсы, имеющиеся на планете; цивилизация II типа - получает энергию своей звезды, в системе которой находится; а цивилизация III типа пользуется доступной энергией своей галактики. Человечество пока не доросло до цивилизации I типа по этой шкале. Мы используем лишь 0.16% всего объема потенциального энергетического запаса планеты Земля. А значит, и России и всему миру есть куда расти, и эти ядерные технологии откроют нашей стране дорогу не только в космос, но и будущее экономическое процветание.
И, возможно, единственный вариант для России в научно-технической сфере - это совершить сейчас революционный прорыв в ядерных космических технологиях для того чтобы одним «прыжком» преодолеть многолетнее отставание от лидеров и оказаться сразу у истоков новой технологической революции в очередном цикле развития человеческой цивилизации. Такой уникальный шанс выпадает той или иной стране лишь один раз в несколько столетий.
К сожалению, Россия, не уделявшая в последние 25 лет должного внимания фундаментальным наукам и качеству высшего и среднего образования, рискует навсегда упустить этот шанс, если программа окажется свернутой, а на смену нынешним ученым и инженерам не придет новое поколение исследователей. Геополитические и технологические вызовы, с которыми столкнется Россия уже через 10–12 лет, будут очень серьезными, сопоставимыми с угрозами середины ХХ века. Чтобы сохранить суверенитет и целостность России в будущем уже сейчас необходимо срочно начинать подготовку специалистов, способных на эти вызовы отвечать и создавать что-то принципиально новое.
Есть лишь примерно 10 лет на то, чтобы превратить Россию в мировой интеллектуально-технологический центр, и без серьезного изменения качества образования это сделать невозможно. Для научно-технологического прорыва необходимо вернуть системе образования (и школьной и ВУЗовской) системность взглядов на картину мира, научную фундаментальность и мировоззренческую целостность.
А что касается нынешнего застоя в космической отрасли, то это не страшно. Физические принципы, на которых основаны современные космические технологии будут еще долго востребованы сектором обычных спутниковых услуг. Вспомним, что человечество использовало парус на протяжении 5.5 тысяч лет, а эпоха пара длилась почти 200 лет, и лишь в ХХ веке мир начал стремительно меняться, потому что произошла очередная научно-техническая революция, запустившая волну инноваций и смену технологических укладов, что в итоге изменило и мировую экономику и политику. Главное, оказаться у истоков этих изменений[email protected] ,
сайт: https://delpress.ru/information-for-subscribers.html

Подписаться на электронную версию журнала «Арсенал Отечества» можно по ссылке .
Стоимость годовой подписки -
10 800 руб.

Для длительной работы в космосе должны использоваться надежные электроракетные двигатели со скоростью истечения плазмы порядка ста пяти метров в секунду и больше. Плазменные двигатели начали активно разрабатывать еще в середине прошлого века. И сегодня эта работа продолжается.

Начало исследований

В космос наши предки давно хотели полететь. Уже давно активно изучался газ при помощи электрического разряда. Его помещали в стеклянную емкость с электродами. Тогда при снижении давления появлялись лучи, исходящие из катода, что на самом деле, как позже выяснили, было потоком электронов.

А в 1886 году обнаружилось, что, проделывая отверстия в катоде, в обратном направлении от них тянулись другие лучи — ионизированные атомы газов. Но тогда, конечно, не догадывались, что их будут применять для получения

Во времена Советского Союза в лабораториях физико-технического СОАН разрабатывались ионные и плазменные двигатели, чтобы применять эти технологии в аппаратах для полета в космос. Работа началась еще в пятидесятые годы двадцатого столетия. Были открыты два типа устройств:

  • эрозионный двигатель (импульсный);
  • стационарный плазменный двигатель (неимпульсный).

Именно эти два вида и используются по сей день.

Эрозионный и стационарный

Плазменный двигатель, который известен сегодня, функционирует за счет реактивной силы струи плазмы из сопла. Сама плазма образуется посредством электроразряда. Для более простого мотора выбирается импульсный режим (эрозионный плазменный двигатель). В качестве энергоисточника выступает которого составляет 0,5 мкФ, а напряжение — 10 кВ. Его зарядка происходит от трансформатора диодами и резистором.

С помощью таких устройств образуются малые и точные импульсные тяги, которые невозможно получить при работе других типов ракетных моторов. Успешные испытания импульсные плазменные двигатели прошли в 1964 году на космической станции «Зонд-2».

СПД является вариантом ускорителя на протяженной зоне и с замкнутым дрейфом из электронов. Такие устройства способны работать длительный период времени. Два двигателя на ксеноне были впервые запущены в 1972 году на борту советского «Метеора».

Принцип действия: опытный образец

Работа установки производится следующим образом. Напряжением для конденсатора является зазор между коллектором, проводящим ток, и электродами разрядной камеры. При достижении напряжением величины пробоя, в камере двигателя появляется электроразряд. Воздух там нагревается до десяти тысяч единиц и приобретает плазменное состояние. Давление с резкостью увеличивается, и струя плазмы с огромной скоростью вытекает из сопла.

Ракета, которая соединена с двигателем, получает реактивную силу от струи. Для осуществления мягкого вращения ракета прикрепляется шариковым подшипником и благодаря противовесу уравновешивается.

Самым сложным электроузлом является коллектор, подводящий ток. Зазоры между электродами должны быть не более половины миллиметра. Тогда мощность при передаче от конденсатора почти не потеряется, и не будет образовано дополнительное трение, когда ракета начнет вращаться.

Сама ракета и весь плазменный могут иметь разные размеры, однако должно соблюдаться соответствие мощности источника и размера конденсатора. Для расчета базовых узлов и конструкции ракеты удобно использовать схему после вычисления по специальным формулам.

Опытные значения на примере

На примере с заданным напряжением в шесть тысяч Ватт и емкости конденсатора 0,5*10(-6) ф в результате вычислений получится энергия, которая выделяется в камере двигателя, равная 5,4 Дж. А если разница температур составит 10000К, то объем камеры получится равный половине кубического сантиметра.

Тогда элементами электрической схемы станут:

  • трансформатор 220*5000В, имеющий мощность 200 Ватт;
  • резистор проволочный, имеющий мощность 100 Ватт.

Эта модель имеет рабочее напряжение более тысячи вольт, а поэтому необходимо быть очень осторожным при работе с ней и соблюдать все необходимые правила безопасности.

Правила безопасности при проведении опыта

  1. Запуск проводит один человек. Другие могут стоять в отдалении на расстоянии от одного метра от прибора.
  2. Все операции и касания установки руками можно делать только в том случае, если она отключена от питания, выждав не менее минуты после этого. Тогда конденсатор успеет разрядиться.
  3. Источник питания должен быть расположен в корпусе из металла, закрытом со всех сторон. При работе он заземляется посредством медного провода, диаметр которого должен составлять не менее полутора миллиметров.

Плазменные двигатели для настоящих ракет должны иметь мощность в несколько тысяч раз больше! Может, тем, кто сегодня проводит опыты с маленькими образцами, завтра предстоит открывать новые возможности и

«Метеор-10», выведенный 29 декабря 1971 года на условно-синхронную орбиту (что позволяло проходить над одними и теми же точками земной поверхности через определенные интервалы времени) был самым обычным метеоспутником. Но только на первый взгляд: на его борту кроме обычной системы ориентации стояли еще два экспериментальных двигателя.

Один из них, носящий имя греческого бога западного ветра - «Зефир», проработал всего около часа и дальнейшего развития не получил. А вот второй, названный в честь повелителя ветров - «Эол-1», разработанный группой сотрудников ИАЭ (Института атомной энергии) под руководством Алексея Ивановича Морозова и изготовленный калининградским ОКБ «Факел», положил начало целому космическому направлению - плазменным двигателям.

История плазменных двигателей началась в 1950 году, когда выпускника физфака МГУ Алексея Морозова партком распределил преподавать механику и электротехнику в техникуме заводского поселка Людиново на юго-востоке Калужской области. Причина проста: отец Морозова был репрессирован и никто не принимал во внимание ни его специализацию (квантовая теория поля), ни неоднократные просьбы его научного руководителя - декана физфака Арсения Александровича Соколова - оставить его на кафедре.

Преподавателей физики в те годы довольно часто просили выступать с лекциями об атомной энергии, и Морозов не стал исключением. В один из дней 1953 года он возвращался в Людиново с подобной лекции в деревне Черный поток. «Незадолго до этого я прочитал книжку Гудмана об основах ядерной энергетики. Там была схема ядерной ракеты - газ проходил сквозь активную зону и разогревался. Меня поразило, насколько неэффективна эта конструкция - с одной стороны, атомная энергия, а с другой - это ведь просто тепловая машина! - вспоминает Алексей Иванович. - И пока я шел 12 км по шпалам до Людиново, я вспомнил эксперименты с силой Ампера и катушкой Томсона, которые я показывал студентам в училище, и мне пришла в голову идея - почему бы не разгонять рабочее тело магнитным полем?»

Теоретические выкладки показывали, что это вполне возможно, и Морозов решил провести эксперимент. Изготовив из асбоцемента «кирпичик», он просверлил в нем крест-накрест два отверстия. В одно он с разных сторон вставил два угольных стержня от батареек, а сверху и снизу бруска расположил два полюса мощного электромагнита. В обычном состоянии плазма, образующаяся в процессе горения дуги, с легким шипением вылетала с обеих сторон второго отверстия, но стоило включить электромагнит - и поток стал бить в одну сторону со страшным ревом.

СПД - это кольцевой электромагнит, в зазор которого помещена камера из керамики. В торце камеры расположен анод. Снаружи, возле среза канала двигателя, - два катода-нейтрализатора. Рабочий ксенон подается в камеру и вблизи анода ионизуется. Ионы ускоряются в эл. поле и вылетают из двигателя, создавая реактивную тягу. Их объемный заряд нейтрализуется электронами, подаваемыми с катода-нейтрализатора.

В 1955 году Морозов написал статью «О возможности создания плазменных электрореактивных двигателей», но его научный руководитель, прочитав ее, дал хороший совет: «Такую статью сразу же засекретят. Лучше изменить название на что-нибудь более нейтральное». В результате в ЖЭТФ (Журнал экспериментальной и теоретической физики) статья вышла под названием «Об ускорении плазмы магнитным полем». Рецензировал ее глава отдела плазменных исследований ИАЭ Лев Арцимович. Теория, изложенная в статье Морозова, позднее нашла свое отражение в статье самого Арцимовича о рельсотроне (только у Морозова магнитное поле было постоянное, а у Арцимовича - электродинамическое).

Публикация вызвала среди специалистов большой резонанс, ее даже дважды обсуждали на заседании Американского физического общества.

В 1955 году Морозов защитил диссертацию, а в 1957-м его пригласили на работу в ИАЭ. К концу 1950-х успехи СССР в космосе вдохновили конструкторов замахнуться на несколько крупномасштабных космических проектов. Планировался даже полет к Марсу, и поэтому 2 июля 1959 года Лев Арцимович созвал сотрудников на совещание. Темой обсуждения была возможность построения двигателей для марсианского корабля. Арцимович предложил для такой системы следующие характеристики: тяга около 10 кгс, скорость истечения 100 км/с при мощности двигателя 10 МВт.

Сотрудники ИАЭ предложили несколько проектов: плазменный импульсный двигатель (А.М. Андрианов), магнитно-плазменный аналог сопла Лаваля (А.И. Морозов) и двигатель на основе однощелевого источника ионов, практически такого же, какой применялся для электромагнитного разделения изотопов (Павел Матвеевич Морозов, однофамилец Алексея Ивановича).

Кстати, все эти проекты в том или ином виде позднее были реализованы. Плазменно-эрозионный (вариант импульсного) двигатель Андрианова значительно меньшей мощности был установлен на один из спутников и выведен в космос в 1964 году, а ионный двигатель П.М. Морозова под именем «Зефир» (тоже маломощный) стоял на том самом спутнике «Метеор-10». Эксперименты с магнитным аналогом сопла Лаваля с центральным телом (сами разработчики называли его «коаксиал») велись с 1960 года, но схема оказалась сложной, и построен он был лишь в 1980 году совместными усилиями ИАЭ, Харьковского физико-технического института, ТРИНИТИ и Института физики Белоруссии. Мощность этого монстра составила 10 ГВт!

Однако эти проекты не подходили для марсианской программы по одной простой причине: у конструкторов тогда не было источников питания подходящей мощности. Эта проблема актуальна и сейчас: максимум, на который можно рассчитывать, это десятки киловатт. Нужно было переходить к мелкому масштабу.

Георгий Гродзовский (ЦАГИ) одним из первых стал конструировать маломощные электроракетные двигатели у нас в стране. Начиная с 1959 года его ионные двигатели испытывались в космосе (правда, не на спутниках, а на баллистических ракетах). В 1957 году М.С. Иоффе и Е.Е. Юшманов начали исследования магнитной (так называемой пробочной) ловушки для плазмы. Для заполнения ее горячей плазмой (10 млн. градусов) они использовали ускорение ионов в скрещенных электрических и магнитных полях. Эта работа послужила фундаментом для создания ряда плазменных двигателей.

В 1962 году Алексей Морозов предложил свою конструкцию плазменного двигателя малой мощности, названного СПД (стационарный плазменный двигатель). Принципиально важной особенностью СПД было то, что величина магнитного поля нарастала к срезу канала двигателя - это обеспечивало создание в плазме объемного электрического поля. Вся идея двигателя была построена именно на существовании такого поля.

Простейшие электроракетные двигатели разогревают газ перед истечением электрической дугой (аркджеты) или раскаленной током проволокой - резистоджеты. Встречаются они и в наше время - их конструкция проста, дешева и надежна. Правда, КПД, скорость истечения и тяга невелики. Пионером ионных двигателей считается американец Г. Кауфман. В его схеме используется ионизация дуговым разрядом, а ионы затем разгоняются электростатическим полем в ионно-оптической системе.

«Впервые на возможность существования объемных электрических полей в плазме указал в 1910 году Таунсенд, однако на протяжении 50 лет попытки создать такое поле были неудачны. В то время считали, что, поскольку плазма является проводником - поле в ней создать нельзя. На самом деле создать объемное электрическое поле в плазме без магнитного поля действительно нельзя - за счет свободных электронов происходит ее экранирование. Но в присутствии магнитного поля, которое влияет на движение электронов, объемные электрические поля в плазме могут существовать.

Группа А.И. Морозова начала заниматься СПД в 1962 году. Почти пять лет двигатель существовал в лабораторном варианте - в 1967-м модель еще была оснащена водяным охлаждением. Пора было приступать к летно-космическим испытаниям, но на этом этапе разработчики столкнулись с неожиданной проблемой. Конструкторы космических аппаратов категорически отказывались ставить на борт что-либо электрическое! Директор ИАЭ академик Александров несколько раз встречался с конструкторами различных космических аппаратов, и ему удалось наконец договориться с Иосифьяном, главным конструктором спутников серии «Метеор».

Однако проблемы на этом не закончились. В 1969 году Иосифьян выдал группе разработчиков техническое задание, согласно которому они должны были сделать не сам двигатель, а всю установку, включая систему питания, подачи ксенона и т.п. При этом надо было уложиться в очень жесткие рамки: тяга 2 гс, КПД 30-40%, потребляемая мощность 400 Вт, масса 15 кг, ресурс 100 часов. И все это нужно было сделать за 5 месяцев! Группа Морозова работала буквально днем и ночью, но успела. Изготовление же двигательной установки было поручено калининградскому ОКБ «Факел», директором которого был в то время талантливый конструктор Роальд Снарский. Через несколько дней после запуска «Метеора» начались эксперименты с двигателями. «Эол-1» был установлен на спутник таким образом, что ось его тяги не проходила через центр масс аппарата. При включении двигателя возникал некоторый крутящий момент, который можно было компенсировать системой ориентации, при этом она служила еще и измерителем тяги «Эола».

За экспериментом внимательно следили не только создатели двигателя, но и скептики, коих было достаточно. «Эол-1» должен был проработать всего несколько минут, потом автоматически выключиться (конструкторы боялись, что струя плазмы заблокирует радиосигнал). Двигатель отработал свое и выключился. После проведения радиоконтроля орбиты оказалось, что результаты в точности соответствуют лабораторным данным. Правда, скептики не угомонились и выдвинули гипотезу, что изменение орбиты вызвано обычным истечением газа через открытый клапан. Но это предположение не подтвердилось: после второго включения по команде с Земли двигатель проработал еще 170 часов, подняв орбиту «Метеора-10» на 15 км. ОКБ «Факел» отлично справилось со своей задачей: ресурс был превышен почти вдвое.

В этом году Американское общество по электроракетным двигателям (Electric Rocket Propulsion Society, ERPS) решило отметить столетие исследований в данной области (1906-2006) и учредило специальную награду - медаль «За выдающиеся достижения в области электроракетных двигателей». Алексей Иванович Морозов оказался среди первых шести награжденных. Остальные пять - это Е. Стулингер, Г. Кауфман и Р. Ян (США), Г. Лёб (Германия) и К. Курики (Япония).

В начале 1980-х «Факел» начинает серийно производить двигатели СПД-70 - потомки «Эолов». Первый спутник с этим двигателем, «Гейзер №1», был запущен в 1982-м, а в 1994-м новой моделью СПД-100 оснастили спутник связи «Галс-1». Однако, хотя сообщение об успешном испытании плазменного двигателя «Эол» в 1974 году было совершенно открыто опубликовано в журнале «Космические исследования», зарубежные конструкторы считали СПД лишь интересной теоретической разработкой. Поэтому демонстрация представителям NASA и JPL в 1991 году работающих двигателей «Факела» и сообщение, что подобными оснащены серийные спутники, вызвала у них настоящий шок (американцы в основном пошли по пути разработки ионных двигателей).

Неудивительно, что «Факел» сейчас считается в мире ведущим производителем электроракетных плазменных двигателей. «На каждом третьем российском спутнике стоит наш двигатель, а три из пяти крупнейших западных производителей космических аппаратов покупают у нас СПД, - рассказал директор и генеральный конструктор ОКБ «Факел» Вячеслав Михайлович Мурашко. - Ими, например, оснащены спутники MBSat-1, Intelsat-X-02, Inmarsat-4F1». Посылая свой спутник SMART-1 к Луне, Европейское космическое агентство выбрало для него в качестве двигателей плазменные PPS-1350, совместную разработку французской компании Snecma Moteurs, ОКБ «Факел» и МИРЭА.

Что же ожидает нас в ближайшем будущем? В 1980-х годах группа в МИРЭА разработала двигатель следующего поколения, СПД Атон. Расходимость плазменного пучка в СПД-100 составляет +/- 45 градусов, КПД - 50%, а соответствующие характеристики СПД Атон +/-15 градусов и 65%! Он пока не востребован, как и другой наш двигатель, двухступенчатый СПД Мах с измененной геометрией поля - конструкторы пока обходятся более простыми СПД-100. Дальний космос требует двигателей с масштабами 10-100 кВт или даже МВт. Подобные разработки уже есть - в 1976 году в ИАЭ сделали двигатель мощностью в 30 кВт, да и «Факел» в конце 1980-х разработал СПД-290 мощностью 25 кВт для космического буксира «Геркулес». В любом случае теория таких двигателей построена, поэтому в рамках классической схемы СПД вполне реально довести мощность до 300 кВт. А вот дальше, возможно, придется перейти к другим конструкциям. Например, к двухлинзовому ускорителю на водороде, разработанному в ИАЭ в конце 1970-х. Эта машина имела мощность 5 МВт и скорость истечения 1000 км/с. В любом случае на межпланетных кораблях будут стоять плазменные двигатели.

Обзор подготовлен по материалам: Популярная механика

Оригинал взят у



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама