THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама
Логика. Учебное пособие Гусев Дмитрий Алексеевич

4.10. Парадоксы-антиномии

4.10. Парадоксы-антиномии

От софизмов следует отличать логические парадоксы (греч. paradoxos – неожиданный, странный). Парадокс в широком смысле слова – это нечто необычное и удивительное, то, что расходится с привычными ожиданиями, здравым смыслом и жизненным опытом. Логический парадокс – это такая необычная и удивительная ситуация, когда два противоречащих суждения не только являются одновременно истинными (что невозможно в силу логических законов противоречия и исключенного третьего), но еще и вытекают друг из друга, друг друга обуславливают. Если софизм – это всегда какая-либо уловка, преднамеренная логическая ошибка, которую в любом случае можно обнаружить, разоблачить и устранить, то парадокс представляет собой неразрешимую ситуацию, своего рода мыслительный тупик, «камень преткновения» в логике: за всю ее историю было предложено множество разнообразных способов преодоления и устранения парадоксов, однако ни один из них, до сих пор, не является исчерпывающим, окончательным и общепризнанным.

Наиболее известный логический парадокс – это парадокс «лжеца». Часто его называют «королем логических парадоксов». Он был открыт еще в Древней Греции. По преданию, философ Диодор Кронос дал обет не принимать пищи до тех пор, пока не разрешит этот парадокс и умер от голода, так ничего и не добившись; а другой мыслитель – Филет Косский впал в отчаяние от невозможности найти решение парадокса «лжеца» и покончил с собой, бросившись со скалы в море. Существует несколько различных формулировок данного парадокса. Наиболее коротко и просто он формулируется в ситуации, когда человек произносит простую фразу: «Я лжец». Анализ этого элементарного и бесхитростного на первый взгляд высказывания приводит к ошеломляющему результату. Как известно, любое высказывание (в том числе и вышеприведенное) может быть истинным или ложным. Рассмотрим последовательно оба случая, в первом из которых высказывание «Я лжец» является истинным, а во втором – ложным.

1. Допустим, что фраза «Я лжец» истинна, т. е. человек, который произнес ее, сказал правду , но в этом случае он действительно лжец, следовательно, произнеся данную фразу, он солгал .

2. Допустим, что фраза «Я лжец» ложна, т. е. человек, который произнес ее, солгал , но в этом случае он не лжец, а правдолюб , следовательно, произнеся данную фразу, он сказал правду. Получается нечто удивительное и даже невозможное: если человек сказал правду, то он солгал; а если он солгал, то он сказал правду (два противоречащих суждения не только одновременно истинны, но и вытекают друг из друга).

Другой известный логический парадокс, обнаруженный в начале XX века английским логиком и философом Бертраном Расселом, – это парадокс «деревенского парикмахера». Представим себе, что в некой деревне есть только один парикмахер, бреющий тех ее жителей, которые не бреются сами. Анализ этой незамысловатой ситуации приводит к необыкновенному выводу. Зададимся вопросом: может ли деревенский парикмахер брить самого себя? Рассмотрим оба варианта, в первом из которых он сам себя бреет, а во втором – не бреет.

1. Допустим, что деревенский парикмахер сам себя бреет , но тогда он относится к тем жителям деревни, которые бреются сами и которых не бреет парикмахер, следовательно, в этом случае, он сам себя не бреет .

2. Допустим, что деревенский парикмахер сам себя не бреет , но тогда он относится к тем жителям деревни, которые не бреются сами и которых бреет парикмахер, следовательно, в этом случае, он сам себя бреет . Как видим, получается невероятное: если деревенский парикмахер сам себя бреет, то он сам себя не бреет; а если он сам себя не бреет, то он сам себя бреет (два противоречащих суждения являются одновременно истинными и взаимообуславливают друг друга).

Парадоксы «лжеца» и «деревенского парикмахера» вместе с другими подобными им парадоксами также называют антиномиями (греч. antinomia – противоречие в законе), т. е. рассуждениями, в которых доказывается, что два высказывания, отрицающие друг друга, вытекают одно из другого. Считается, что антиномии представляют собой наиболее резкую форму парадоксов. Однако, довольно часто термины «логический парадокс» и «антиномия» рассматриваются как синонимы.

4.12. Парадоксы-апории Отдельной группой парадоксов являются апории (греч. aporia – затруднение, недоумение) – рассуждения, которые показывают противоречия между тем, что мы воспринимаем органами чувств (видим, слышим, осязаем и т. п.) и тем, что можно мысленно

Парадоксы времени Предыдущая глава фактически была посвящена проблеме существования мира в пространстве, теперь же обратим внимание на его существование во времени. Что это вообще такое - время? Очевидный ответ: количественная характеристика потока происходящих

Парадоксы морали Автономная мораль с ее претензией на абсолютность неизбежно оборачивается парадоксальностью. Обладая изначальностью по отношению к сознательной (целесообразной) человеческой деятельности и будучи тем самым, ее пределом, мораль не может обнаружиться

III. Кантовская критика способности суждения. Парадоксы схематизируются в антиномии В нашем анализе <Салоны> Дидро представляли стихию просвещенного вкуса и были тем <образом культуры> века Просвещения, который м стремились понять.<Критика способности суждения>

ПАРАДОКСЫ «...Истина все же скорее возникает из ошибки, чем из спутанности...» Ф. Бэкон «Логические парадоксы озадачили с момента своего открытия и, вероятно, будут озадачивать нас всегда. Мы должны, я думаю, рассматривать их не столько как проблемы, ожидающие решения,

ПАРАДОКСЫ И ХИТРЕЦЫ В Древней Греции пользовался большой популярностью рассказ о крокодиле и матери. Крокодил выхватил у женщины, стоявшей на берегу реки, ее ребенка. На ее мольбу вернуть ребенка крокодил, пролив, как всегда, крокодилову слезу, ответил: - Твое несчастье

Парадоксы сознания Можно допустить, что все люди обладают сознанием, но это вовсе не означает, что все они отдают себе в этом отчет. Вся эта сфера не предполагает полной однородности. Мы не знаем, как рождается и возникает сознание, мы также не знаем, каковы его связи с

2.4. Парадоксы исторического творчества Вернемся теперь к проблемам обособления экономической власти от политической. Справедливо указывают на то, что, совершив данное разделение, Европа получила в свои руки фактор развития невиданной мощи. Индивидный тип бытия означает

ПАРАДОКСЫ ДЕМОКРАТИИ Американский образец демократии, сформировавшийся в XVIII–XIX веках, фактически представлял демократию меньшинства, типичным носителем которой выступал белый, протестант, домовладелец. Так называемое политическое участие - претензия быть

Предисловие «Парадоксы аннотирования» Вещь – странная штука. Она кажется нам определенной, раз и навсегда данной – какой-нибудь стул, кирпич, лист писчей бумаги. Обычные, понятные вещи, никакой двусмысленности. И все-таки…Вы можете видеть в этой, такой понятной вам вещи

ПАРАДОКСЫ НЕТОЧНОСТИ Говорят, главное во всяком деле - уловить момент. Это относится, пожалуй, и к таким делам, как размышление и рассуждение. Однако здесь «момент» улавливается особенно трудно, и существенную роль в этом играют как раз неточные понятия.- Один мальчик

Глава 7 ПАРАДОКСЫ И ЛОГИКА «КОРОЛЬ ЛОГИЧЕСКИХ ПАРАДОКСОВ» Наиболее известным и, пожалуй, самым интересным из всех логических парадоксов является парадокс «лжеца». Он-то главным образом и прославил имя открывшего его упоминавшегося уже Евбулида из Милета.Имеется много

Если в результате прочтения этой подборки вы не запутаетесь полностью, значит вы мыслите недостаточно ясно.
Учёные и мыслители с давних времён любят развлекать себя и коллег постановкой неразрешимых задач и формулированием разного рода парадоксов. Некоторые из подобных мысленных экспериментов сохраняют актуальность на протяжении тысяч лет, что свидетельствует о несовершенстве многих популярных научных моделей и «дырах» в общепринятых теориях, давно считающихся фундаментальными. Предлагаем вам поразмыслить над наиболее интересными и удивительными парадоксами, которые, как сейчас выражаются, «взорвали мозг» не одному поколению логиков, философов и математиков.
Апория «Ахиллес и черепаха»
Парадокс Ахиллеса и черепахи - одна из апорий (логически верных, но противоречивых высказываний), сформулированных древнегреческим философом Зеноном Элейским в V-м веке до нашей эры. Суть её в следующем: легендарный герой Ахиллес решил посоревноваться в беге с черепахой. Как известно, черепахи не отличаются прыткостью, поэтому Ахиллес дал сопернику фору в 500 м. Когда черепаха преодолевает эту дистанцию, герой пускается в погоню со скоростью в 10 раз большей, то есть пока черепаха ползёт 50 м, Ахиллес успевает пробежать данные ей 500 м форы. Затем бегун преодолевает следующие 50 м, но черепаха в это время отползает ещё на 5 м, кажется, что Ахиллес вот-вот её догонит, однако соперница всё ещё впереди и пока он бежит 5 м, ей удаётся продвинуться ещё на полметра и так далее. Дистанция между ними бесконечно сокращается, но по идее, герою так и не удаётся догнать медлительную черепаху, она ненамного, но всегда опережает его.


Конечно, с точки зрения физики парадокс не имеет смысла - если Ахиллес движется намного быстрее, он в любом случае вырвется вперёд, однако Зенон, в первую очередь, хотел продемонстрировать своими рассуждениями, что идеализированные математические понятия «точка пространства» и «момент времени» не слишком подходят для корректного применения к реальному движению. Апория выявляет расхождение между математически обоснованной идеей, что ненулевые интервалы пространства и времени можно делить бесконечно (поэтому черепаха должна всегда оставаться впереди) и реальностью, в которой герой, конечно, выигрывает гонку.
Парадокс временной петли
Парадоксы, описывающие путешествия во времени, давно служат источником вдохновения для писателей-фантастов и создателей научно-фантастических фильмов и сериалов. Существует несколько вариантов парадоксов временной петли, один из самых простых и наглядных примеров подобной проблемы привёл в своей книге «The New Time Travelers» («Новые путешественники во времени») Дэвид Туми, профессор из Университета Массачусетса.
Представьте себе, что путешественник во времени купил в книжном магазине экземпляр шекспировского «Гамлета». Затем он отправился в Англию времён Королевы-девы Елизаветы I и отыскав Уильяма Шекспира, вручил ему книгу. Тот переписал её и издал, как собственное сочинение. Проходят сотни лет, «Гамлета» переводят на десятки языков, бесконечно переиздают, и одна из копий оказывается в том самом книжном магазине, где путешественник во времени покупает её и отдаёт Шекспиру, а тот снимает копию и так далее… Кого в таком случае нужно считать автором бессмертной трагедии?
Парадокс девочки и мальчика
В теории вероятностей этот парадокс также называют «Дети мистера Смита» или «Проблемы миссис Смит». Впервые он был сформулирован американским математиком Мартином Гарднером в одном из номеров журнала «Scientific American». Учёные спорят над парадоксом уже несколько десятилетий и существует несколько способов его разрешения. Поразмыслив над проблемой, вы можете предложить и свой собственный вариант.
В семье есть двое детей и точно известно, что один из них - мальчик. Какова вероятность того, что второй ребёнок тоже имеет мужской пол? На первый взгляд, ответ вполне очевиден - 50 на 50, либо он действительно мальчик, либо девочка, шансы должны быть равными. Проблема в том, что для двухдетных семей существует четыре возможных комбинации полов детей - две девочки, два мальчика, старший мальчик и младшая девочка и наоборот - девочка старшего возраста и мальчик младшего. Первую можно исключить, так как один из детей совершенно точно мальчик, но в таком случае остаются три возможных варианта, а не два и вероятность того, что второе чадо тоже мальчик - один шанс из трёх.
Парадокс Журдена с карточкой
Проблему, предложенную британским логиком и математиком Филиппом Журденом в начале XX-го века, можно считать одной из разновидностей знаменитого парадокса лжеца.
Представьте себе - вы держите в руках открытку, на которой написано: «Утверждение на обратной стороне открытки истинно». Перевернув открытку, вы обнаруживаете фразу «Утверждение на другой стороне ложно». Как вы понимаете, противоречие налицо: если первое утверждение правдиво, то второе тоже соответствует действительности, но в таком случае первое должно оказаться ложным. Если же первая сторона открытки лжива, то фразу на второй также нельзя считать истинной, а это значит, первое утверждение опять-таки становится правдой… Ещё более интересный вариант парадокса лжеца - в следующем пункте.
Софизм «Крокодил»
На берегу реки стоят мать с ребёнком, вдруг к ним подплывает крокодил и затаскивает ребёнка в воду. Безутешная мать просит вернуть её чадо, на что крокодил отвечает, что согласен отдать его целым и невредимым, если женщина правильно ответит на его вопрос: «Вернёт ли он её ребёнка?». Понятно, что у женщины два варианта ответа - да или нет. Если она утверждает, что крокодил отдаст ей ребёнка, то всё зависит от животного - посчитав ответ правдой, похититель отпустит ребёнка, если же он скажет, что мать ошиблась, то ребёнка ей не видать, согласно всем правилам договора.
Отрицательный ответ женщины всё значительно усложняет - если он оказывается верным, похититель должен выполнить условия сделки и отпустить дитя, но таким образом ответ матери не будет соответствовать действительности. Чтобы обеспечить лживость такого ответа, крокодилу нужно вернуть ребёнка матери, но это противоречит договору, ведь её ошибка должна оставить чадо у крокодила.
Стоит отметить, что сделка, предложенная крокодилом, содержит логическое противоречие, поэтому его обещание невыполнимо. Автором этого классического софизма считается оратор, мыслитель и политический деятель Коракс Сиракузский, живший в V-м веке до нашей эры.
Апория «Дихотомия»


Ещё один парадокс от Зенона Элейского, демонстрирующий некорректность идеализированной математической модели движения. Проблему можно поставить так - скажем, вы задались целью пройти какую-нибудь улицу вашего города от начала и до конца. Для этого вам необходимо преодолеть первую её половину, затем половину оставшейся половины, далее половину следующего отрезка и так далее. Иначе говоря - вы проходите половину всего расстояния, затем четверть, одну восьмую, одну шестнадцатую - количество уменьшающихся отрезков пути стремится к бесконечности, так как любую оставшуюся часть можно разделить надвое, значит пройти весь путь целиком невозможно. Формулируя несколько надуманный на первый взгляд парадокс, Зенон хотел показать, что математические законы противоречат реальности, ведь на самом деле вы можете без труда пройти всё расстояние без остатка.
Апория «Летящая стрела»
Знаменитый парадокс Зенона Элейского затрагивает глубочайшие противоречия в представлениях учёных о природе движения и времени. Апория сформулирована так: стрела, выпущенная из лука, остаётся неподвижной, так как в любой момент времени она покоится, не совершая перемещения. Если в каждый момент времени стрела покоится, значит она всегда находится в состоянии покоя и не движется вообще, так как нет момента времени, в который стрела перемещается в пространстве.


Выдающиеся умы человечества веками пытаются разрешить парадокс летящей стрелы, однако с логической точки зрения он составлен абсолютно верно. Для его опровержения требуется объяснить, каким образом конечный временной отрезок может состоять из бесконечного числа моментов времени - доказать это не удалось даже Аристотелю, убедительно критиковавшему апорию Зенона. Аристотель справедливо указывал, что отрезок времени нельзя считать суммой неких неделимых изолированных моментов, однако многие учёные считают, что его подход не отличается глубиной и не опровергает наличие парадокса. Стоит отметить, что постановкой проблемы летящей стрелы Зенон стремился не опровергнуть возможность движения, как таковую, а выявить противоречия в идеалистических математических концепциях.
Парадокс Галилея
В своём труде «Беседы и математические доказательства, касающиеся двух новых отраслей науки» Галилео Галилей предложил парадокс, демонстрирующий любопытные свойства бесконечных множеств. Учёный сформулировал два противоречащих друг другу суждения. Первое: есть числа, представляющие собой квадраты других целых чисел, например 1, 9, 16, 25, 36 и так далее. Существуют и другие числа, у которых нет этого свойства - 2, 3, 5, 6, 7, 8, 10 и тому подобные. Таким образом, общее количество точных квадратов и обычных чисел должно быть больше, чем количество только точных квадратов. Второе суждение: для каждого натурального числа найдётся его точный квадрат, а для каждого квадрата существует целый квадратный корень, то есть, количество квадратов равно количеству натуральных чисел.
На основании этого противоречия Галилей сделал вывод, что рассуждения о количестве элементов применены только к конечным множествам, хотя позже математики ввели понятие мощности множества - с его помощью была доказана верность второго суждения Галилея и для бесконечных множеств.
Парадокс мешка картофеля


Допустим, у некоего фермера имеется мешок картофеля весом ровно 100 кг. Изучив его содержимое, фермер обнаруживает, что мешок хранился в сырости - 99% его массы составляет вода и 1% остальные вещества, содержащиеся в картофеле. Он решает немного высушить картофель, чтобы содержание воды в нём снизилось до 98% и переносит мешок в сухое место. На следующий день оказывается, что, один литр (1 кг) воды действительно испарился, но вес мешка уменьшился со 100 до 50 кг, как такое может быть? Давайте посчитаем - 99% от 100 кг это 99 кг, значит соотношение массы сухого остатка и массы воды изначально было равно 1/99. После сушки вода насчитывает 98% от общей массы мешка, значит соотношение массы сухого остатка к массе воды теперь составляет 1/49. Так как масса остатка не изменилась, оставшаяся вода весит 49 кг.
Конечно, внимательный читатель сразу обнаружит грубейшую математическую ошибку в расчётах - мнимый шуточный «парадокс мешка картофеля» можно считать отличным примером того, как с помощью на первый взгляд «логичных» и «научно подкреплённых» рассуждений можно буквально на пустом месте выстроить теорию, противоречащую здравому смыслу.
Парадокс воронов
Проблема также известна, как парадокс Гемпеля - второе название она получила в честь немецкого математика Карла Густава Гемпеля, автора её классического варианта. Проблема формулируется довольно просто: каждый ворон имеет чёрный цвет. Из этого следует, что всё, что не чёрного цвета, не может быть вороном. Этот закон называется логическая контрапозиция, то есть если некая посылка «А» имеет следствие «Б», то отрицание «Б» равнозначно отрицанию «А». Если человек видит чёрного ворона, это укрепляет его уверенность, что все вороны имеют чёрный окрас, что вполне логично, однако в соответствии с контрапозицией и принципом индукции, закономерно утверждать, что наблюдение предметов не чёрного цвета (скажем, красных яблок) также доказывает, что все вороны окрашены в чёрный цвет. Иными словами - то, что человек живёт в Санкт-Петербурге доказывает, что он живёт не в Москве.
С точки зрения логики парадокс выглядит безукоризненно, однако он противоречит реальной жизни - красные яблоки никоим образом не могут подтверждать тот факт, что все вороны чёрного цвета.

Учёные и мыслители с давних времён любят развлекать себя и коллег постановкой неразрешимых задач и формулированием разного рода парадоксов. Некоторые из подобных мысленных экспериментов сохраняют актуальность на протяжении тысяч лет, что свидетельствует о несовершенстве многих популярных научных моделей и «дырах» в общепринятых теориях, давно считающихся фундаментальными. Предлагаем вам поразмыслить над наиболее интересными и удивительными парадоксами, которые, как сейчас выражаются, «взорвали мозг» не одному поколению логиков, философов и математиков.

1. Апория «Ахиллес и черепаха»

Парадокс Ахиллеса и черепахи - одна из апорий (логически верных, но противоречивых высказываний), сформулированных древнегреческим философом Зеноном Элейским в V-м веке до нашей эры. Суть её в следующем: легендарный герой Ахиллес решил посоревноваться в беге с черепахой. Как известно, черепахи не отличаются прыткостью, поэтому Ахиллес дал сопернику фору в 500 м. Когда черепаха преодолевает эту дистанцию, герой пускается в погоню со скоростью в 10 раз большей, то есть пока черепаха ползёт 50 м, Ахиллес успевает пробежать данные ей 500 м форы. Затем бегун преодолевает следующие 50 м, но черепаха в это время отползает ещё на 5 м, кажется, что Ахиллес вот-вот её догонит, однако соперница всё ещё впереди и пока он бежит 5 м, ей удаётся продвинуться ещё на полметра и так далее. Дистанция между ними бесконечно сокращается, но по идее, герою так и не удаётся догнать медлительную черепаху, она ненамного, но всегда опережает его.

Конечно, с точки зрения физики парадокс не имеет смысла - если Ахиллес движется намного быстрее, он в любом случае вырвется вперёд, однако Зенон, в первую очередь, хотел продемонстрировать своими рассуждениями, что идеализированные математические понятия «точка пространства» и «момент времени» не слишком подходят для корректного применения к реальному движению. Апория выявляет расхождение между математически обоснованной идеей, что ненулевые интервалы пространства и времени можно делить бесконечно (поэтому черепаха должна всегда оставаться впереди) и реальностью, в которой герой, конечно, выигрывает гонку.

2. Парадокс временной петли

Парадоксы, описывающие путешествия во времени, давно служат источником вдохновения для писателей-фантастов и создателей научно-фантастических фильмов и сериалов. Существует несколько вариантов парадоксов временной петли, один из самых простых и наглядных примеров подобной проблемы привёл в своей книге «The New Time Travelers» («Новые путешественники во времени») Дэвид Туми, профессор из Университета Массачусетса.

Представьте себе, что путешественник во времени купил в книжном магазине экземпляр шекспировского «Гамлета». Затем он отправился в Англию времён Королевы-девы Елизаветы I и отыскав Уильяма Шекспира, вручил ему книгу. Тот переписал её и издал, как собственное сочинение. Проходят сотни лет, «Гамлета» переводят на десятки языков, бесконечно переиздают, и одна из копий оказывается в том самом книжном магазине, где путешественник во времени покупает её и отдаёт Шекспиру, а тот снимает копию и так далее… Кого в таком случае нужно считать автором бессмертной трагедии?

3. Парадокс девочки и мальчика

В теории вероятностей этот парадокс также называют «Дети мистера Смита» или «Проблемы миссис Смит». Впервые он был сформулирован американским математиком Мартином Гарднером в одном из номеров журнала «Scientific American». Учёные спорят над парадоксом уже несколько десятилетий и существует несколько способов его разрешения. Поразмыслив над проблемой, вы можете предложить и свой собственный вариант.

В семье есть двое детей и точно известно, что один из них - мальчик. Какова вероятность того, что второй ребёнок тоже имеет мужской пол? На первый взгляд, ответ вполне очевиден - 50 на 50, либо он действительно мальчик, либо девочка, шансы должны быть равными. Проблема в том, что для двухдетных семей существует четыре возможных комбинации полов детей - две девочки, два мальчика, старший мальчик и младшая девочка и наоборот - девочка старшего возраста и мальчик младшего. Первую можно исключить, так как один из детей совершенно точно мальчик, но в таком случае остаются три возможных варианта, а не два и вероятность того, что второе чадо тоже мальчик - один шанс из трёх.

4. Парадокс Журдена с карточкой

Проблему, предложенную британским логиком и математиком Филиппом Журденом в начале XX-го века, можно считать одной из разновидностей знаменитого парадокса лжеца.

Представьте себе - вы держите в руках открытку, на которой написано: «Утверждение на обратной стороне открытки истинно». Перевернув открытку, вы обнаруживаете фразу «Утверждение на другой стороне ложно». Как вы понимаете, противоречие налицо: если первое утверждение правдиво, то второе тоже соответствует действительности, но в таком случае первое должно оказаться ложным. Если же первая сторона открытки лжива, то фразу на второй также нельзя считать истинной, а это значит, первое утверждение опять-таки становится правдой… Ещё более интересный вариант парадокса лжеца - в следующем пункте.

5. Софизм «Крокодил»

На берегу реки стоят мать с ребёнком, вдруг к ним подплывает крокодил и затаскивает ребёнка в воду. Безутешная мать просит вернуть её чадо, на что крокодил отвечает, что согласен отдать его целым и невредимым, если женщина правильно ответит на его вопрос: «Вернёт ли он её ребёнка?». Понятно, что у женщины два варианта ответа - да или нет. Если она утверждает, что крокодил отдаст ей ребёнка, то всё зависит от животного - посчитав ответ правдой, похититель отпустит ребёнка, если же он скажет, что мать ошиблась, то ребёнка ей не видать, согласно всем правилам договора.

Отрицательный ответ женщины всё значительно усложняет - если он оказывается верным, похититель должен выполнить условия сделки и отпустить дитя, но таким образом ответ матери не будет соответствовать действительности. Чтобы обеспечить лживость такого ответа, крокодилу нужно вернуть ребёнка матери, но это противоречит договору, ведь её ошибка должна оставить чадо у крокодила.

Стоит отметить, что сделка, предложенная крокодилом, содержит логическое противоречие, поэтому его обещание невыполнимо. Автором этого классического софизма считается оратор, мыслитель и политический деятель Коракс Сиракузский, живший в V-м веке до нашей эры.

6. Апория «Дихотомия»


Ещё один парадокс от Зенона Элейского, демонстрирующий некорректность идеализированной математической модели движения. Проблему можно поставить так - скажем, вы задались целью пройти какую-нибудь улицу вашего города от начала и до конца. Для этого вам необходимо преодолеть первую её половину, затем половину оставшейся половины, далее половину следующего отрезка и так далее. Иначе говоря - вы проходите половину всего расстояния, затем четверть, одну восьмую, одну шестнадцатую - количество уменьшающихся отрезков пути стремится к бесконечности, так как любую оставшуюся часть можно разделить надвое, значит пройти весь путь целиком невозможно. Формулируя несколько надуманный на первый взгляд парадокс, Зенон хотел показать, что математические законы противоречат реальности, ведь на самом деле вы можете без труда пройти всё расстояние без остатка.

7. Апория «Летящая стрела»

Знаменитый парадокс Зенона Элейского затрагивает глубочайшие противоречия в представлениях учёных о природе движения и времени. Апория сформулирована так: стрела, выпущенная из лука, остаётся неподвижной, так как в любой момент времени она покоится, не совершая перемещения. Если в каждый момент времени стрела покоится, значит она всегда находится в состоянии покоя и не движется вообще, так как нет момента времени, в который стрела перемещается в пространстве.


Выдающиеся умы человечества веками пытаются разрешить парадокс летящей стрелы, однако с логической точки зрения он составлен абсолютно верно. Для его опровержения требуется объяснить, каким образом конечный временной отрезок может состоять из бесконечного числа моментов времени - доказать это не удалось даже Аристотелю, убедительно критиковавшему апорию Зенона. Аристотель справедливо указывал, что отрезок времени нельзя считать суммой неких неделимых изолированных моментов, однако многие учёные считают, что его подход не отличается глубиной и не опровергает наличие парадокса. Стоит отметить, что постановкой проблемы летящей стрелы Зенон стремился не опровергнуть возможность движения, как таковую, а выявить противоречия в идеалистических математических концепциях.

8. Парадокс Галилея

В своём труде «Беседы и математические доказательства, касающиеся двух новых отраслей науки» Галилео Галилей предложил парадокс, демонстрирующий любопытные свойства бесконечных множеств. Учёный сформулировал два противоречащих друг другу суждения. Первое: есть числа, представляющие собой квадраты других целых чисел, например 1, 9, 16, 25, 36 и так далее. Существуют и другие числа, у которых нет этого свойства - 2, 3, 5, 6, 7, 8, 10 и тому подобные. Таким образом, общее количество точных квадратов и обычных чисел должно быть больше, чем количество только точных квадратов. Второе суждение: для каждого натурального числа найдётся его точный квадрат, а для каждого квадрата существует целый квадратный корень, то есть, количество квадратов равно количеству натуральных чисел.

На основании этого противоречия Галилей сделал вывод, что рассуждения о количестве элементов применены только к конечным множествам, хотя позже математики ввели понятие, мощности множества - с его помощью была доказана верность второго суждения Галилея и для бесконечных множеств.

9. Парадокс мешка картофеля


Допустим, у некоего фермера имеется мешок картофеля весом ровно 100 кг. Изучив его содержимое, фермер обнаруживает, что мешок хранился в сырости - 99% его массы составляет вода и 1% остальные вещества, содержащиеся в картофеле. Он решает немного высушить картофель, чтобы содержание воды в нём снизилось до 98% и переносит мешок в сухое место. На следующий день оказывается, что, один литр (1 кг) воды действительно испарился, но вес мешка уменьшился со 100 до 50 кг, как такое может быть? Давайте посчитаем - 99% от 100 кг это 99 кг, значит соотношение массы сухого остатка и массы воды изначально было равно 1/99. После сушки вода насчитывает 98% от общей массы мешка, значит соотношение массы сухого остатка к массе воды теперь составляет 1/49. Так как масса остатка не изменилась, оставшаяся вода весит 49 кг.

Конечно, внимательный читатель сразу обнаружит грубейшую математическую ошибку в расчётах - мнимый шуточный «парадокс мешка картофеля» можно считать отличным примером того, как с помощью на первый взгляд «логичных» и «научно подкреплённых» рассуждений можно буквально на пустом месте выстроить теорию, противоречащую здравому смыслу.

10. Парадокс воронов

Проблема также известна, как парадокс Гемпеля - второе название она получила в честь немецкого математика Карла Густава Гемпеля, автора её классического варианта. Проблема формулируется довольно просто: каждый ворон имеет чёрный цвет. Из этого следует, что всё, что не чёрного цвета, не может быть вороном. Этот закон называется логическая контрапозиция, то есть если некая посылка «А» имеет следствие «Б», то отрицание «Б» равнозначно отрицанию «А». Если человек видит чёрного ворона, это укрепляет его уверенность, что все вороны имеют чёрный окрас, что вполне логично, однако в соответствии с контрапозицией и принципом индукции, закономерно утверждать, что наблюдение предметов не чёрного цвета (скажем, красных яблок) также доказывает, что все вороны окрашены в чёрный цвет. Иными словами - то, что человек живёт в Санкт-Петербурге доказывает, что он живёт не в Москве.

С точки зрения логики парадокс выглядит безукоризненно, однако он противоречит реальной жизни - красные яблоки никоим образом не могут подтверждать тот факт, что все вороны чёрного цвета.

Как работает «мозгопочта» - передача сообщений от мозга к мозгу через интернет

10 тайн мира, которые наука, наконец, раскрыла

10 главных вопросов о Вселенной, ответы на которые учёные ищут прямо сейчас

8 вещей, которые не может объяснить наука

2500-летняя научная тайна: почему мы зеваем

3 самых глупых аргумента, которыми противники Теории эволюции оправдывают своё невежество

Можно ли с помощью современных технологий реализовать способности супергероев?

Этот эпизод с умным миссионером является одной из перефразировок парадокса древнегреческих философов Протагора и Эватла.

Но с подобным парадоксом формальной логики сталкивался всякий исследователь, который пытался строго определить все понятия в своей теории. Этого никому еще не удавалось, так как все сводилось в конечном счете к тавталогии типа: "Движение - это перемещение тел в пространстве, а перемещение - это движение тел в пространстве"

Еще один вариант этого парадокса. Некто совершил преступление, караемое смертной казнью. На суде ему представляется последнее слово. Он должен произнести одно утверждение. Если оно окажется истинным, преступника утопят. Если же оно будет ложным, преступника повесят. Какое утверждение он должен высказать, чтобы привести судью в полное замешательство? Подумайте сами.

Озадаченный этим парадоксом, Протагор посвятил этому спору с Еватлом особое сочинение «Тяжба о плате». К сожалению, оно, как и большая часть написанного Протагором, не дошло до нас. Философ Протагор сразу почувствовавал, что за этим парадоксом скрывается сто-то сущностное, заслуживающее специального исследования.

Апория Зенона Элейского. Летящая стрела по законам формальной логики не может лететь. Летящая стрела в каждый момент времени занимает равное себе положение, то есть покоится; поскольку она покоится в каждый момент времени, то она покоится во все моменты времени, то есть не существует момента времени, в котором стрела совершает движение и не занимает равное себе место.

Эта апория является следствием представления о дискретности движения о том, что движущееся тело в дискретные единицы времени проходит дискретные промежутки расстояния, и расстояние - это сумма бесконечного числа неделимых отрезков, которые тело проходит. Эта апория затрагивает глубокий вопрос о природе пространства и времени - о дискретности и непрерывности. Если наш мир дискретен, то движение в нем невозможно, а если он непрерывен, то измерить его дискретными единицами длины и дискретными единицами времени невозможно.

Формальная логика основана на концепции дискретности мира, начало которой следует искать в учении Демокрита об атомах и пустоте, а может быть, и в более ранних философских учениях древней Греции. Мы не задумываемся о парадоксальности формальной логики, когда говорим, что скорость - это количество метров или километров, пройденных телом, которые оно проходит в секунду или в минуту (физика нас учит, что расстояние, деленное на время - это скорость). Расстояние мы измеряем дискретными единицами (метрами, километрами, верстами, аршинами и т.д.), время - тоже дискретными единицами (минуты, секунды, часы и т.д.). У нас есть эталон расстояния - метр, или иной отрезок, с которым мы сравниваем путь. Эталоном времени (по сути, тоже отрезком) мы измеряем время. Но ведь расстояние и время непрерывны. А если прерывны (дискретны), то что находится в стыках их дискретных частей? Потусторонний мир? Параллельный мир? Гипотезы о параллельных мирах неверны, т.к. основаны на рассуждениях по законам формальной логики, полагающей, что мир дискретен. Но если бы он был дискретен, то в нем было бы невозможно движение. А это значит, что все в таком мире было бы мертво.

Действительно, этот парадокс неразрешим в двоичной логике. Но ведь именно эта логика лежит в основе большинства наших рассуждений. Из этого парадокса следует, что истинное суждение о чем-то нельзя построить в рамках этого чего-то. Для этого надо выйти за его пределы. Это значит, что критянин Эпименид не может объективно судить о критянах и давать им характеристики, так как сам является критянином.

Парадокс лжеца. «То, что я утверждаю сейчас - ложно», или «Данное высказывание - ложь». Этот парадокс сформулировал философ мегарской школы Евбулид. Он сказал: «Критянин Эпименид утверждал, что все критяне лжецы». Если Эпименид прав, что все критяне лжецы, то он тоже лжец. Если же Эпименид лжец, то он лжет, что все критяне лжецы. Так лжецы или не лжецы критяне? Ясно, что цепочка этих рассуждений ущербна, но в чем?.

В науке это значит, что невозможно понять и объяснить систему, исходя из элементов только этой системы, свойств этих элементов и процессов, происходящих внутри этой системы. Для этого следует рассматривать систему как часть чего-то большего - внешней среды, системы большего порядка, частью которой является система, которую мы изучаем. Иначе: чтобы понять частное, надо подняться до более всеобщего.

Парадокс Платона и Сократа
Платон: «Следующее высказывание Сократа будет ложным».
Сократ: «То, что сказал Платон, истинно».
То есть, если предположить, что Платон говорит правду, что Сократ лжет, то Сократ лжет, что Платон говорит правду, значит Платон лжет. Если же Платон лжет, что Сократ лжет, то Сократ говорит правду, что Платон прав. И цепочка рассуждений возвращается в начало.

Парадокс этот состоит в том, что в рамках формальной логики суждение может быть одновременно и истинно, и ложно. Это утверждение, составляющее парадокс лжеца, в формальной логике не доказуемо и не опровержимо. Считается, что данное высказывание вообще не является логическим утверждением. Попытка разрешить этот парадокс приводит к тройственной логике, комплексной логике.

Этот парадокс показывает несовершенство формальной логики, попросту - ее ущербность.

Этот парадокс говорит о том, что для характеристики элементов системы элементами этой системы, требуется, чтобы количество элементов в этой системе было больше двух. Тезы и антитезы недостаточно, чтобы охарактеризовать какой-то элемент. Если высказывание не истинно, то из этого не следует, что оно ложно. И наоборот, если высказывание не ложно, то это не значит, что оно истинно. Нашему разуму нелегко согласиться с этим утверждением, ведь мы пользуемся формальной альтернативной логикой. А случай с высказываниями Платона и Сократа говорит о том, что это возможно. Посудите сами: нам говорят: "Шар в коробке не черный". Если мы подумаем, что он белый, то мы можем ошибиться, так как шар может оказаться синим, красным, или желтым.

В двух последних примерах мы видим, что парадоксы рождаются из ущербности формальной (двоичной) логики. Вдумаемся в то, как фраза должна быть построена правильно: "История учит человека, а он из истории ничему не учится". В такой формулировке, при таком уточнении никакой парадокс уже не содержится. Два последних парадокса не являются антиномиями, их можно устранить в рамках законов формальной логики, правильно построив фразу.

Брадобрей себя не бреет, парадокс Рассела запрещает ему это. Фото с сайта: http://positivcheg.ru/foto/837-solidnye-dyadenki.html

Парадокс Рассела: Содержит ли множество всех множеств само себя, если множества, в него входящие, не содержат самих себя (являются пустыми множествами)? Рассел популяризовал его в форме «парадокса брадобрея»: «Брадобрей бреет только тех людей, которые не бреются сами. Бреет ли он себя?».

Здесь налицо парадокс определения: Мы начали строить логическую конструкцию, не определив, что такое множество. Если брадобрей - часть множества людей, которых он бреет, то он за бритье должен брать плату и с самого себя. Так что же такое определение? А ведь и ученые нередко оперирует понятиями, которые никак не определяют, отчего не могут понять друг друга и бессмысленно спорят.

Понятие "пустое множество" абсурдно по определению. Как может быть множество пустым, ничего не содержащим? Брадобрей не входит во множество людей, которых он бреет как брадобрей. Ведь себя любой мужчина бреет не как брадобрей, а как бреющийся мужчина. А бреющийся мужчина - не брадобрей, так как плату с себя за это не берет.

Парадокс из разряда антиномий - порожден ошибкой в рассуждениях, в построении фразы. Следующий парадокс также относится к антиномиям.

В этом случае надо вспомнить о том, что человек должен учиться размышлять, а не только запоминать. Учение как механическое запоминание большой ценности не имеет. Примерно 85-90% того, что человек запоминает, обучаясь в школе и вузе, он забывает в течение первых 3-5 лет. А вот если его научили размышлять, то этим умением он владеет практически всю жизнь. Но что будет с людьми, если им при обучении давать запоминать только те 10% информации, которую они запоминают надолго? К сожалению, такого эксперимента еще никто не ставил. Хотя...

Был в нашем селе один мужик, кторый закончил в начале 30-х только 4 класса школы. Но в 60-х он работал главным бухгалтером колхоза и с работой справлялся лучше, чем сменивший его потом бухгалтер со средним техническим образованием.

Но если корабль определить как систему, сущность которой определяется его свойствами как целого: весом, водоизмещением, скоростью, КПД и прочими характеристиками, то и при замене всех деталей аналогичными деталями корабль остается прежним. Свойства целого отличаются от свойств его частей и не сводятся к свойствам этих частей. Целое больше суммы его частей! Поэтому и в 50 лет человек остается самим собой, хотя 95% атомов его тела уже много раз за это время заменены другими, да и атомов в его теле становится больше, чем было в возрасте 10 лет.

Так что не совсем прав был древний философ, заявив, что нельзя дважды войти в одну и ту же реку, так как вода в ней течет и все время молекулы ее в потоке заменяются. В этом случае неявно постулируется, что река - это сумма именно этих молекул воды и никаких других молекул воды. Но ведь это не так, ведь мы реку воспринимаем не как набор молекул воды, а как поток определенной глубины и ширины, с определенной скоростью течения, одним словом, река - это динамическая система, а не сумма своих частей.

Лысеющий орангутанг. Фото с сайта: http://stayer.35photo.ru/photo_125775

Лысеющий одуванчик. Фото с сайта: http://www.fotonostra.ru/4101.html

Часто ответ на вопрос об облысении лежит в иной плоскости, чем та, в которой его сформулировали. Чтобы ответить на такой вопрос, надо выйти из одной плоскости рассуждений и восприятия в совершенно иную. Например, публикации одного ученого цитируют 100 раз в год, а другого 1 раз в год. Вопрос: кто из них гениальный ученый? Разных ответов на этот вопрос может быть четыре: 1 - никто, 2 - оба, 3 - первый, 4 - второй. И все четыре ответа в данном случае равновероятны, так как количество цитирований в принципе не может быть признаком гениальности. Правильный ответ на этот вопрос можно плучить только через 100 лет или чуть меньше.

Абсурдность в данном случае проистекает от отсутствия четкого определения понятия "демократия". Если общественная система (государство) должна быть демократичной, то следует выполнить равное представительство именно от избирателей. Равное представительство от штатов, если численность населения в них разная, - это не принцип демократии, а что-то иное. Равное представительство от партий - это что-то третье, от религиозных кофессий - четвертое и т.д.

Парадокс демократии (голосования): "нельзя совместить все требования к избирательной системе в одной системе". Если выполнить равное представительство в парламенте от штатов или областей, то при этом невозможно выполнить равное представительство в парламенте от избирателей. А ведь еще есть религиозные конфессии и т.д.

Но в политике даже формальная логика не в почете, а зачастую она нарушается намеренно, чтобы запудрить мозги электорату. В США технологии "пудрения мозгов" развиты просто превосходно. Выборы у них не демократические, а мажоритарные, но американцы свято верят в то, что у них демократическое государство и готовы порвать всякого, кто об их общественной системе думает иначе. Аристократическую форму управления государством они ухитряются выдать за демократическую. А возможна ли демократические выборы в принципе?

Но практически вывод Монте-Карло может быть ложным и по другой причине. Ведь условие о независимости элементарных событий при игре в рулетку может и не выполняться. А если элементарные события не независимы, а "сцеплены" друг с другом как известными нам, так и неизвестными пока способами... то в этом случае лучше ставить на черное, а не на красное.

Может оказаться, что во Вселенной есть и другие носители энергии и информации, а не только колебания электромагнитного поля и потоки элементарных частиц. Если в своей основе Вселенная не дискретна (вакуум), а сплошная, то этот парадокс неуместен. Тогда на каждую часть Вселенной оказывает влияние вся остальная ее часть, тогда каждый атом мироздания связан и взаимодействует со всеми остальными атомами, как бы далеко они от него не находились. А ведь в бесконечной Вселенной атомов должно быть бесконечное количество... Стоп! Опять начинают кипеть мозги.

Этот парадокс проистекает от нашего непонимания, что такое время. Если время - это поток мира со множеством протоков (как часто бывает у реки), а скорость течения в протоках разная, то щепочка, попавшая в быструю протоку, потом опять попадет в медленную, когда быстрая протока сольется с медленной, в которой плывет другая щепочка, с которой когда-то они плыли рядом. Но теперь одна щепочка окажется впереди своей "подруги" и с ней не уже встретится. Чтобы им встретиться, отставшая "подруга" должна попасть в другую быструю протоку, а опередившая - плыть в это время в медленной протоке. Получается, что брат близнец, улетевший на субсветовом корабле, в принципе не может вернуться в прошлое и встретиться со своим братом. Медленный поток времени (субсветовой корабль) задержал его в потоке времени. За это время его брат не просто стал старше, но он ушел в будущее, вместе с ним в будущее ушло все, что его окружало. Так что брат, отставший во времени, в будущее попасть уже не сможет в принципе.

А если река времени не имеет проток с разной скоростью, то и никакого парадокса быть не может. Может, теория относительности неверна, и время не относительно, а абсолютно?

Парадокс убитого дедушки: вы перемещаетесь в прошлое и убиваете своего дедушку до того, как он познакомился с вашей бабушкой. Из-за этого вы не сможете появиться на свет и, следовательно, не сможете убить своего дедушку.

Этот парадокс доказывает, что путешествия в прошлое невозможны. Для того, чтобы попасть в прошлое, человеку надо превратиться в иную сущность - перейти в пятимерное пространство время, в котором прошлое, настоящее и будущее существуют вместе - слиты воедино, ему придется родиться, умереть и жить, и все это в виде некоего единосущного яления, когда "родится, жить и умереть" не раздельны друг с другом. Стать таким существом для человека означает верную смерть - распад на субатомные частицы. В общем, мы живем в четырехмерном мире, и в пятимерный мир нам путь заказан.

И слава Богу! Поэтому дедушке не грозит, что его внук явится из будущего и убьет его. А таких внуков, накурившихся марихуаны, сегодня немало.

Недавно центральное бюро Китая по вопросам кино, радио и телевидения запретило показывать фильмы о путешествиях во времени, поскольку они «демонстрируют неуважение к истории». Кинокритик Раймонд Чжоу Лимин пояснил причины запрета тем, что сейчас путешествия во времени - популярная тема в сериалах и в кино, но смысл таких произведений, а также их подача весьма сомнительны. «Большинство из них полностью вымышлены, не соответствуют логике и не соответствуют историческим реалиям. Продюсеры и сценаристы слишком легкомысленно относятся к истории, искажают ее и навязывают этот образ зрителям, и это не стоит поощрять», - добавил он. Такие произведения не опираются на науку, а пользуются ею как предлогом для комментирования текущих событий.

Я считаю, что китайцы попали в самую точку, поняв вред таких фильмов. Морочить людей глупостями, выдавая их за научную фантастику, опасно. Дело в том, что подобные фильмы расшатывают у людей чувство реальности, границы реальности. А это верный путь к шизофрении.

Сальвадор Дали средствами живописи показал абсурдность наших представлений о времени. Текущие часы - это еще не время. А что же такое время? Если бы не было времени, то не было бы движения. А может, правильнее говорить так: если бы не было движения, то не было бы и времени?. А может, время и движение - это одно и то же? Нет, скорее с помощью категорий время и пространство мы пытаемся характеризовать и измерять движение. В этом случае время - это что-то вроде аршина малалана. Чтобы путешествовать во времени, надо перестать быть живыми (живущими) людьми и надо научиться двигаться внутри самого движения.

Времени нет, есть движение, а движение - это и есть время. Все парадоксы, связанные со временем, происходят от того, что времени приписываются свойства пространства. Но пространство - это скаляр, а время - вектор.

Прошлое и настоящее. Если бы можно было вот так соединить прошлое с настоящим, то мы могли бы по вечерам ходить гулять во двор нашего детства и встречаться там с друзьями детства, причем друзья детства были бы детьми, а мы взрослыми. Но это сделать невозможно. Время - это не характеристика любого движения, а характеристика движения необратимого. Даже если пустить движение по кругу - зациклить, то каждый цикл будет отличаться чем-то от предыдущего. Фото с сайта: http://kluchikov.net/node/76

Вот так мы изменяемся во времени. Путешествие в прошлое возможно только с помощью просмотра старых фотографий и старых кино. Еще с помощью нашей памяти. Может быть, память как раз и есть то, что делает нас пятимерными сущностями? Наверное, память и есть единственно возможная машина времени, которая может умчать нас в прошлое. Надо только научиться все вспоминать. Фото с сайта: http://loveopium.ru/page/94

Ахиллес и черепаха: Быстроногий Ахиллес никогда не догонит неторопливую черепаху, если в начале движения черепаха находится впереди Ахиллеса, так как пока он переместится в точку, где была черепаха в начале состязания, она успеет продвинуться хоть немного вперёд. Пока Ахиллес добежит до точки, где находилась черепаха, она успеет переместиться на определенное расстояние вперед. Теперь Ахиллесу придется снова пробежать некоторое расстояние до места, где была черепаха, а она за это время снова переместится вперед, и так далее – количество точек приближения Ахиллеса к черепахе стремится к бесконечности. Получается, что Ахиллес никогда не догонит черепаху, но мы же понимаем, что в реальности он ее легко догонит и обгонит.

Почему так происходит, из-за чего образовался этот парадокс? А дело в том, что расстояние - это не совокупность точек. Ведь точка не имеет размера и на любом геометрическом отрезке количество точек может равняться бесконечности. Чтобы побывать в бесконечном количестве точек, Ахиллесу потребуется бесконечное время. Поэтому получается, что дискретная математика и формальная логика к реальности неприменимы, а если и применимы, то с большими оговорками.

Этот парадокс связан с тем, что формальная логика оперирует в дискретном мире с дискретными телами, состоящими из точек, и явлениями, которые тоже представляют совокупности точек в четырехмерном пространстве-времени. Этот парадокс не столь уж безобиден. Вот уже 2,5 тыс. лет он показывает ученым абсурдность формальной логики и ограниченность математики. Но ученые упрямо верят в формальную логику и математику и ничего не хотят менять. Хотя... Робкие попытки изменить логику предпринимались и в философии, и в математике.

Черепахе стало жалко Ахиллеса и она остановилась. Только тогда измученный и постаревший Ахиллес смог догнать ее и наконец отдохнуть. Рисунок с сайта: http://ecolours.pl/life.php?q=zeno-of-elea&page=2

Ахиллес бежит за черепахой. В реальности он ее запросто догоняет, а вот в логической конструкции этого процесса он догнать ее не может. Черепаха имеет фору в 100 метров. Оба бегуна одновременно начинают движение. Пока Ахиллес добежит до точки А, черепаха переместится в точку В, ахиллес опять сократит расстояние между собой и черепахой и переместится в точку С. Но в это время черепаха переместится вперед и окажется впереди Ахиллеса в точке Д. Ахиллес снова сократит расстояние между собой и черепахой и окажется в точке Е. Но черепаха за это время опять уползет вперед и окажется в точке Ж. И так до бесконечности. Расстояние между Ахиллесом и черепахой будет сокращаться, но догнать ее он не сможет. Этот вывод следует из формальной логики. Рисунок с сайта: http://nebesa87.livejournal.com/

В математике попыткой вырваться из плена формальной логики было создание дифференциального и интегрального исчисления. И то и другое предполагает непрерывное изменение некоторой величины в зависимости от непрерывного же изменения другой величины. Столбчатые диаграммы изображают зависимость дискретных явлений и процессов, а графики (линии) - непрерывных процессов и явлений. Однако переход от диаграммы к графику есть некое таинство - что-то вроде святотатства. Ведь все экспериментальные данные (результаты конкретных измерений) дискретны. А исследователь вместо диаграммы берет и рисует график. Что это? Если подходить строго, то дело тут обстоит так: график - это трансформация диаграммы в график, который аппроксимирует эту диаграмму. Строя график в виде сплошной линии, мы совершаем переход из мира дискретных явлений и предметов в мир непрерывный. Это попытка вырваться за пределы формальной логики и тем самым избежать ее парадоксы.

В философии уже в XIX веке ученые осознали ущербность формальной логики, некоторые стали пытаться разрешить эту проблему. Дружно заговорили о диалектике, о триаде (Гегель), об иной теории познания. Философы раньше ученых поняли, что формальная логика заводит познание в тупик. Результатом внедрения диалектики в науку стало, например, учение об эволюции (развитии). Ведь если строго находиться на позициях формальной логики, то развитие невозможно в принципе. Преформизм - это жалкая попытка формальной логики объяснить происходящую всюду эволюцию. Преформисты утверждают, что все предначертано в некоторой программе в зародыше, и наблюдаемое развитие - это только реализация (развертывание) этой программы. Формальная генетика родилась из преформизма, но она смогла объяснить только развитие организма в онтогенезе. А вот изменение видов и макроэволюцию формальная генетика объяснить не смогла. Пришлось к той первоначальной формальной генетике пристраивать новое здание, которое на несколько порядков оказалось больше здания классической генетики, вплоть до отрицания дискретных генов. Но и в таком измененном виде генетика смогла объяснить только микроэволюцию, а макроэволюция ей оказалась не по зубам. А те попытки, которые генетики делают, чтобы объяснить макроэволюцию, дают парадоксы, подобные рассмотренным выше.

Но и сегодня позиции формальной логики очень прочны в умах ученых: биологов, биофизиков, генетиков, биохимиков. Диалектика с трудом пробивает себе дорогу в этой науке.

Парадокс гласит, что кто-то всемогущий может создать любую ситуацию, в том числе такую, в которой будет неспособен что-либо сделать. В упрощенном варианте это звучит так: может ли Бог создать камень, который не сможет сам поднять? С одной стороны, он всемогущ и может создать какой угодно камень. С другой стороны, если он не может поднять созданный собой же камень, значит он не всемогущ!

Куча песка состоит из 1 000 000 песчинок. Если забрать из нее одну песчинку, то это все равно будет куча песка. Если продолжить это действие много раз, то получится, что 2 песчинки, и даже одна песчинка – это тоже куча песка. На это можно возразить, что одна песчинка – это всего лишь одна песчинка, но в таком случае нарушается принцип взаимосвязанности утверждений, и мы снова приходим к парадоксу. Спасти эту ситуацию можно только в том случае, если ввести исключение для одной песчинки, которая не является кучей. Но две песчинки тоже трудно назвать кучей. Так с какого же количества песчинок начинается куча?

В действительности так не случается, так как в мире не существует одинаковых вещей, явлений, пучков сена, равноценных видов казни. Если даже пучки сена одинаковые по вкусовым качествам и размеру, то один из них может быть чуть дальше другого, или один глаз осла может быть более зорким, чем другой и т.д. К сожалению, формальная логика этого не учитывает, поэтому применять ее следует осторожно и не во всех суждениях, не всегда ей доверять.

Люди в жизни и в своей деятельности (в том числе и в экономической) ведут себя совсем не как "идеальные" шары в теории. Кроме выгоды, люди стремятся к устойчивости и комфорту в широком смысле этого слова. Неизвестный риск может быть как меньше известного, так и больше его. Можно, конечно, выиграть больше и стать богаче. Но ведь можно и проиграть больше и стать банкротом. А деньги в рост отдают небедные люди, им есть чем дорожить, и оказаться в бомжах они не хотят.

Допустим, я у подруги взял 100 рублей, пошёл в магазин и потерял их. Встретил друга и занял у него еще 50 рублей. Купил бутылку пива за 20 рублей, у меня осталось 30 рублей, которые я отдал подруге и остался должен ей 70 руб. И другу я остался должен 50 руб., итого 120 руб. Плюс у меня бутылка пива за 20 рублей.
Итого 140 рублей!
Где остальные 10 рублей?

Вот пример логической ошибки, заложенной в рассуждения. Ошибка кроется в неверном построении рассуждения. Если "ходить" по заданному логическому кругу, то выбраться из него невозможно.

Попробуем порассуждать. Логическая ошибка в данном случае состоит в том, что долг считается вместе с тем, что у нас имеется, что мы не теряли - с бутылкой пива. Действительно, я занял 100+50=150 рублей. Но я убавил свой долг, вернув 30 рублей подруге, после чего я стал должен ей 70 рублей и 50 рублей стал должен другу (70+50=120). Итого мой долг составил теперь 120 рублей. Но если я отдам бутылку пива стоимостью 20 рублей другу, то я останусь должен ему только 30 рублей. Вместе с долгом подруге (70 рублей) мой долг составит 100 рублей. Но ведь именно эту сумму я и потерял.

В космофизике сегодня очень модной стала теория чёрных дыр. Согласно этой теории, огромные звезды, в которых "сгорает" термоядерное топливо, сжимаются - коллапсируют. При этом их плотность чудовищно возрастает - так, что электроны падают на ядра и внутриатомные пустоты схлопываются. Такая коллапсировавшая сверхплотная потухшая звезда обладает сильной гравитацией и поглощает вещество из космического пространства (как пылесос). При этом такая нейтронная звезда становится все плотнее и тяжелее. Наконец, ее гравитация становится такой мощной, что даже кванты света не могут покинуть ее. Так образуется чёрная дыра.

Этот парадокс позволяет усомниться в физической теории чёрных дыр. Может оказаться, что они не такие уж чёрные . Скорее всего, они обладают структурой и, следовательно, энергией и информацией. Мало того, чёрные дыры не могут вбирать в себя вещество и энергию бесконечно. В конце концов, "объевшись", они "лопаются" и выбрасывают из себя сгустки сверхплотного вещества, которое становится ядрами звезд и планет. Неслучайно чёрные дыры обнаружены в центрах галактик, а в этих центрах наблюдается самая высокая концентрация звезд, убегающих от этих центров.

Всякое противоречие в теоретических догматах науки должно побуждать ученых изменять (совершенствовать) теорию. Столь большое количество парадоксов в логике, математике, физике показывает, что далеко не все обстоит хорошо в этих науках с теоретическими построениями.

В 1850 г. немецкий физик Р. Клаузиус пришёл к выводу, что теплота переходит только от тёплого тела к холодному, и никогда наоборот, отчего состояние Вселенной должно всё больше изменяться в определённом направлении. Физик Уильям Томсон утверждал, что все физические процессы во Вселенной сопровождаются превращением световой энергии в теплоту. Следовательно, Вселенную ожидает «тепловая смерть» - т.е. остывание до абсолютного нуля -273 градуса по Цельсию. Поэтому бесконечно долгое существование "теплой" Вселенной во времени невозможно, она должна остыть.

Теория тепловой смерти Вселенной, по всей вероятности, - теория красивая, но ложная. Что-то термодинамика не учитывает, раз ее постулаты приводят к такому выводу. Однако господа физики слишком любят эту теорию и никак не желают с ней растаться или хотя бы сильно ограничить ее применимость.

Назревает очередная революция в физике. Кто-то гениальный создаст новую теорию, в которой энергия может не только рассеиваться во Вселенной, но и собираться. А может, в черных дырах она и собирается? Ведь если есть механизм рассеяния вещества и энергии, то обязательно должен быть и противоположный ему процесс концентрирования материи. Мир зиждется на единстве и борьбе противоположностей.

Фото с сайта: http://grainsoft.dpspa.org/referat/referat-teplovoy-smerti-vselennoy.html

Клаузиус писал об этом так: «Работа, могущая быть произведенной силами природы и содержащаяся в существующих движениях небесных тел, будет постепенно все больше и больше превращаться в теплоту. Теплота, переходя постоянно от более теплого к более холодному телу и стремясь этим выравнивать существующие различия в температуре, будет постепенно получать все более и более равномерное распределение и наступит также известное равновесие между наличной в эфире лучистой теплотой и теплотой, находящейся в телах. И, наконец, в отношении своего молекулярного расположения тела приблизятся к некоторому состоянию, в котором, что касается господствующей температуры, совокупное рассеяние будет возможно наибольшим». И далее: «Мы должны, следовательно, вывести заключение, что во всех явлениях природы совокупная величина энтропии всегда может лишь возрастать, а не уменьшаться, и мы получаем поэтому как краткое выражение всегда и всюду совершающегося процесса превращения следующее положение: энтропия Вселенной стремится к некоторому максимуму. (http://msd.com.ua/vechnyj-dvigatel/teplovaya-smert-vselennoj-i-rrt-2/)

Но все идет нормально до тех пор, пока не случится кризис производства. А при кризисе производства в США исчезает дефицит платежного баланса. Капитала в банках скопилось много, а вложить его некуда. Капиталы живут только за счет оборота через производство. Как говорят: "Только в полете живут самолеты". А капиталы живут только в процессах производства и потребления. А без производства и потребления капиталы исчезают - превращаются в ничто (вчера был, а сегодня нету), от этого в США растет дефицит платежного баланса - подушки безопасности других стран в банках США бесследно исчезли. США, сделав доллар международной валютой, посадили себя на долларовую иглу. Мировой экономический кризис резко усугубляет ситуацию и здоровье у долларового "наркомана". Стремясь приобрести очередную "дозу", наркоман идет на все, он становится агрессивен.

Китай прекрасно развивается и при социализме. Вовсе не потому, что там мало частной собственности, а больше государственной. Просто китайцы цену на товары стали определять спросом на них. А такое возможно только в условиях рыночной экономики.

Парадокс бережливости. Если каждый будет экономить деньги во время экономического спада, то совокупный спрос упадёт и в результате уменьшатся суммарные накопления населения.

Этот парадокс я бы назвал парадоксом Анжелы Меркель и Саркози. Введя жесткую экономию бюджетов в странах Объединенной Европы, политики резко сократили спрос населения на товары и услуги. Сокращение спроса привело к сокращению производства, в том числе и в самих Германии и Франции.

Европе, чтобы справиться с кризисом, надо перестать экономить и надо смириться с неизбежностью инфляции. При этом часть капиталов будет потеряна, но зато за счет потребления будет спасено производство.

Фото с сайта: http://www.free-lance.ru/commune/?id=11&site=Topic&post=1031826

Но инфляция неизбежно приведет к потере капиталов - накоплений, которые хранит население в банках. Говорят, греки при евро жили не по средствам, бюджет Греции был с большим дефицитом. Но ведь получая эти деньги в виде зарплат и пособий, греки покупали товары, произведенные в Германии, Франции и тем самым стимулировали производство в этих странах. Стало схлопываться производство, выросло число безработных. Кризис усугубился и в странах, считавших себя донорами европейской экономики. Но экономика - это не только производство и его кредитование. Это еще и потребление. Игнорирование законов системы - причина этого парадокса.

Заключение

Заканчивая эту статью, хочу обратить внимание на то, что формальная логика и математика - науки не совершенные и, кичась своими доказательствами и строгостью своих теорем, зиждутся на аксиомах, принятых на веру как вполне очевидные вещи. Но так ли они очевидны эти аксиомы математики?

Что такое точка, не имеющая длины, ширины и тощины? И как так получается, что совокупность этих "бестелесных" точек, если они выстроены в ряд, является линией, а если одним слоем, то плоскостью? Мы берем бесконечное множество точек, не имеющих обьема, выстраиваем их в ряд, и получаем линию бесконечной длины. По-моему, это чушь какая-то.

Этот вопрос я еще в школе задавал учительнице математики. Она сердилась на меня и говорила: "какой же ты бестолковый! Ведь это очевидно." Тогда я спрашивал ее: "А сколько точек можно втиснуть в линию между двумя соседними точками, и можно ли это сделать?" Ведь если бесконечное множество точек приблизить вплотную друг к другу без расстояний между ними, то получится не линия, а точка. Чтобы получить линию или плоскость, надо точки располагать в ряд на некотором расстоянии друг к другу. Такую линию даже пунктирной не назовешь, ведь точки не имеют площади и объема. Они как бы есть, а как бы их вовсе нет, они нематериальны.

В школе я часто задумывался: а правильно ли мы ведем арифметические действия, например, сложение? В арифметике при сложении, 1+1 = 2. Но ведь это может быть и не всегда так. Если к одному яблоку прибавить еще одно яблоко, то получится 2 яблока. Но если на это посмотреть по-другому и считать не яблоки, а абстрактные множества, то сложив 2 множества, мы получим еще третье, состоящее из двух множеств. То есть в этом случае 1 + 1 = 3, а может быть 1+1=1 (два множества слились в одно).

А сколько будет 1+1+1? В обычной арифметике получается 3. А если учесть все комбинации из 3 элементов сначала по 2, а потом по 3? Правильно, в этом случае 1+1+1=6 (три сочетания по 1 элементу, два сочетания по 2 элемента и 1 сочетание по 3 элемента). Комбинаторная арифметика на первый взгляд кажется глупостью, но это так только с непривычки. В химии приходится считать сколько получится молекул воды, если взять 200 атомов водорода и 100 атомов кислорода. Получится 100 молекул воды. А если взять 300 атомов водорода и 100 атомов кислорода? Все равно получится 100 молекул воды и останется 100 атомов водорода. Итак, мы видим, что в химии находит себе применение иная арифметика. Подобные задачи имеют место и в экологии. Например, известно правило Либиха о том, что на растения оказывает влияние химический элемент в почве, который находится в минимуме. Даже если все другие элементы в большом количестве, растение сможет их усвоить столько, сколько позволяет элемент, находящийся в минимуме.

Математики кичатся своей якобы независимостью от реального мира, их мир - это мир абстрактный. Но если это так, то почему мы пользуемся десятеричной системой счета? А у каких-то племен была двадцатеричная система. Очень просто, те южные племена, которые не носили обуви, пользовались двадцатеричной системой - по числу пальцев на руках и на ногах, а вот те, кто жил на севере и носил обувь, при счете использовали только пальцы рук. Будь на руке у нас по три пальца, мы бы пользовались шестеричной системой. А вот если бы мы произошли от динозавров, то у нас было бы по три пальца на каждой руке. Вот вам и независимость математики от внешнего мира.

Порой мне кажется, что будь математика ближе к природе (реальности, опыту), будь она менее абстрактна, не считай себя царицей наук, а будь их слугой, она бы развивалась гораздо быстрее. А так получается, что нематематик Пирсон придумал математический критерий хи-квадрат, который с успехом используют при сравнениях рядов чисел (экспериментальных данных) в генетике, геологии, экономике. Если приглядеться к математике попристальнее, то оказывается, что все принципиально новое в нее вносили как раз физики, химики, биологи, геологи, а математики в лучшем случае это развивали - доказывали с позиций формальной логики.

Исследователи-нематематики постоянно вытаскивали математику из той ортодоксии, в которую ее старались погрузить "чистые" математики. Например, теорию сходства-различия создали не математики, а биологи, теорию информации - телеграфисты, теорию термодинамики - физики-теплотехники. Математики всегда пытались доказать теоремы с помощью формальной логики. Но некоторые теоремы с помощью формальной логики доказать, вероятно, в принципе невозможно.

Использованные источники информации

Математический парадокс. Адрес доступа: http://gadaika.ru/logic/matematicheskii-paradoks

Парадокс. Адрес доступа: http://ru.wikipedia.org/wiki/%CF%E0%F0%E0%E4%EE%EA%F1

Парадокс логический. Адрес доступа: http://dic.academic.ru/dic.nsf/enc_philosophy/

Парадоксы логики. Адрес доступа: http://free-math.ru/publ/zanimatelnaja_matematika/paradoksy_logiki/paradoksy_logiki/11-1-0-19

Храпко Р.И. Логические парадоксы в физике и математике. Адрес доступа:

Есть такая наука, она называется логикой, которая учит, как нужно рассуждать, чтобы наше мышление было определенным, связным, последовательным, доказательным и непротиворечивым. Как человек, не знающий правил арифметики и грамматики, не знающий правил логики, не может без ошибок рассуждать и действовать.

Человеку, занимающемуся математикой, очень часто приходится определять понятия, выяснять связи между ними, рассматривать, на какие группы (виды) могут быть подразделены фигуры, числа, уравнения функции. Но особенно часто в математике приходится путем рассуждений выводить разнообразные формулы, правила и доказывать теоремы. Не случайно находились такие математики, которые думали, что математика – это наука «о производстве необходимых умозаключений». Такой взгляд на математику односторонен, но верно то, что без логики не может быть математики. А это значит, что для успешного изучения математики надо настойчиво учиться правильно рассуждать. Это значит также, что само изучение математики очень полезно для овладения правилами и законами мышления. Не без оснований называют иногда математику «оселком для ума».

Логика – абстрактная наука. В ней нет экспериментов, нет даже фактов в обычном смысле этого слова. Строя свои системы, логика исходит в конечном счете из анализа реального мышления. Но результаты этого анализа носят синтетический характер. Они не являются констатациями каких-либо отдельных процессов или событий, которые должна была бы объяснить теория. Такой анализ нельзя назвать наблюдением: наблюдается всегда конкретное явление.

Исследование всевозможных логических цепочек (силлогизмов) привело к обнаружению знаменитых парадоксов и софизмов. Парадокс – ситуация, когда в теории доказываются два взаимно исключающие друг друга суждения, причем каждое из этих суждений выведено убедительными с точки зрения данной теории средствами.

Простой категорический силлогизм – рассуждение, состоящее из трёх простых атрибутивных высказываний: двух посылок и одного заключения. Посылки силлогизма разделяются на большую (которая содержит предикат заключения) и меньшую (которая содержит субъект заключения).

Пример силлогизма:

Всякий человек смертен (большая посылка)

Сократ – человек (меньшая посылка)

Сократ смертен (заключение)

Цель работы: в этой работе я продолжу развивать мысль своей прошлой работы. Я рассмотрю более подробно софизмы, познакомлю вас с логическими цепочками и с великим человекам, открывшие нам их законы. Изучу несколько новых парадоксов. А также опровергну или найду подтверждения своей гипотезе.

Гипотеза: при решении софизмов и парадоксов используется логика.

Логика ведет своё происхождение от ораторского искусства. Убедить собеседника невозможно, если оратор сам себе противоречит (уж если ты сказал, что снег белый, не следует ссылаться на его черноту). В Древней Греции, где важнейшие вопросы решались на советах, всякий уважающий себя философ, политический деятель или литератор старался строить речь так, чтобы она была доходчива и разумна. В античном мире чрезвычайно ценилось умение высказываться точно, кратко и остроумно.

Любовь к точной фразе привела древнегреческих философов к логике. Что из чего следует и почему? Можно ли, например, утверждать, что Сократ смертен, если дано, что все люди смертны и Сократ человек? Можно. А если дано, что все люди смертны и Сократ тоже смертен, верно ли, что Сократ человек? Неверно: вдруг Сократом зовут не только греческого мудреца, но и, скажем, его собаку?

Законы логики, правила вывода верных утверждений из заданных посылок наиболее полно исследовал великий древнегреческий философ Аристотель.

АРИСТОТЕЛЬ (384-322 до н. э.)

В 366 году до нашей эры в Академии Платона появился новый ученик. Он был родом из Стагира, и было ему 18 лет. Ученика звали Аристотель.

Почти 20 лет провел Аристотель в Академии. Из ученика он превратился в мудреца-философа, соперничавшего в знаниях и глубокомыслии с самим Платоном. Это соперничество подчас становилось весьма острым, но ни разу научные споры Платона с Аристотелем не переросли в личную вражду.

Вскоре после смерти Платона Аристотель покинул Академию. Македонский царь Филипп пригласил его воспитывать царевича Александра. В 335г. до н. э. Аристотель вернулся из Македонии в Афины, где основал собственную школу. Её название – Ликей – вошло впоследствии в латинский и во многие другие языки, изменившись на одну букву: лицей.

Вслед за Платоном, Аристотель считал, что достоверное знание может и должно быть выведено из исходных, несомненных истин – аксиом – при помощи логических рассуждений. Но Аристотель пошел дальше Платона: он описал законы логики, которые позволяют переходить от одного истинного суждения к другому без риска совершить ошибку.

Вот несколько законов, сформулированных Аристотелем. Сякое суждение либо истинно, либо ложно. Ни одно суждение не может быть истинным и ложным одновременно. Из общих утверждений следуют частные (например, из того, что все люди смертны, следует, что Сократ тоже смертен). В течение многих веков научный авторитет Аристотеля был непререкаем.

«ИЛИ», «И», «ЕСЛИ» И «НЕ»

Всякое высказывание может быть истинным или ложным. Третий вариант трудно себе представить, поэтому древнегреческие философы и пользовались «принципом исключенного третьего» - считали, что не может утверждение быть и не истинным, и не ложным. Вслед за ними так считаем и мы. Логика без принципа «исключенного третьего» упоминается разве лишь в фантастических романах, да и то в шутку

А теперь попробуем собрать одно высказывание из двух частей. Как мы часто это делаем, соединим две фразы словечком «или». «В углу шуршит мышь или крокодил». Верно ли это высказывание? Зависит от того, кто на самом деле шуршит в углу. Если это и вправду мышь, фраза верна. Если (как ни трудно себе такое представить) это крокодил, опять же высказывание верно. Если в углу дружно шуршат мышь с крокодилом, она верна снова! И лишь если в углу нет ни мыши, ни крокодила, а шуршит сбежавший из клетки хомяк, высказывание оказывается ложным. Это – свойство, присущее именно «или»: два утверждения, связанные этим словом, составляют верное высказывание, если хотя бы одно из утверждений справедливо, и ложное, если оба утверждения неверны. А теперь составим маленькую табличку (здесь И – «истинное утверждение», Л – «ложное»):

И или И = И,

И или Л = И,

Л или И = И.

Л или Л = Л.

Сравним теперь, как себя ведет связка «и». Разберем пример: «Мимо окна летят воробей и летающая тарелка». Если за окном нет ни воробья, ни тарелки, это высказывание ложно. Если воробей есть, а тарелки нет – оно все равно ложно. Если есть тарелка, но нет воробья – то же самое. И лишь одновременное присутствие обоих означает. Что фраза истинна. Вот таблица истинности для словечка «и»:

Фраза, связанная этим словом, верна в том единственном случае, когда верна в том единственном случае, когда верны обе части!

В этом тексте несколько раз употреблялась конструкция фразы «если так, то будет эдак». Посмотрим, когда верно утверждение такого типа? Оно верно, если верна первая часть (посылка) и одновременно верна вторая (заключение). Оно неверно, если верна посылка, но неверен вывод: несомненно ложным является высказывание «если разбить чашку, то будет землетрясение». А если посылка неверна? Может показаться невероятным, но в этом случае высказывание истинно. Из ложной посылки следует что угодно! На самом деле ничего удивительного в этом нет: вам самим случалось, и не раз, употреблять фразы вроде «если 2х2=5, то я папа римский». Попробуйте доказать, что такое утверждение ложно! Оно означает лишь, что 2х2 не равно пяти, и вы не папа римский, следовательно, оно истинно. Получим такую таблицу истинности:

«И» и «или» - это элементарные действия логики, так же как сложение и умножение – это действия арифметики. Между логическими и арифметическими операциями есть некоторое сходство, и сейчас мы его продемонстрируем. Пусть у нас только две цифры, 0 и 1. Будем обозначать истину единицей, а ложь – нулем. Тогда наша табличка истинности для «или» напоминает таблицу двоичного сложения: 0+0=0; 1+0=1; 0+1=1, и только для «сложения» двух истин (1+1=1) мы получим не тот ответ, который дает нам двоичная арифметика (там 1+1=10), но по большому счету он не слишком сильно отличается от арифметического, ибо нуля мы не получим все равно. Результат же логического умножения – «и» - полностью совпадает с арифметическим: 0х0=0, 1х0=0, 0х1=0, 1х1=1.

Аналога операции «если» на первый взгляд в арифметике нет. Но если ввести ещё одно логическое действие, не рассмотренное нами подробно – «не», отрицание, устроенное чрезвычайно просто (не истина есть ложь, не ложь есть истина, т. е. в чистом виде закон исключенного третьего), - оказывается, можно выразить «если» через «или», «и» и «не». Самом деле, конструкция «А и В, или не А» ведет себя точно так же, как «если А, то В». Если А истинно, то не А ложно, и истинность всего высказывания зависит от истинности В; если же А ложно, то не А истинно, и независимо от истинности или ложности В высказывание будет верным.

Мы не зря упомянули здесь арифметическую аналогию логических операций. Поскольку можно (с некоторыми поправками) выразить цифрами и арифметическими знаками истинность или ложность высказываний, то можно научить логике вычислительную машину. Ей будут доступны все логические рассуждения, сколь угодно сложные – нужно лишь выразить их через «и», «или» и «не».

ПАРАДОКСЫ.

Парадокс (от греческого para – протии и doxa – мнение) – противоречивое высказывание.

В широком смысле парадокс – неочевидное высказывание, истинность которого устанавливается трудно; в этом смысле парадоксальными принято называть любые неожиданные противоречивые высказывания, особенно если неожиданность их смысла выражена в остроумной форме.

В математике парадокс – ситуация, когда в данной теории доказываются два взаимоисключающих суждения, причем каждое из этих суждений выведено убедительными с точки зрения данной теории средствами, т. е. парадокс – высказывание, которое в данной теории равным образом может быть доказано и как истина, и как ложь.

Парадоксы, как правило, свидетельствуют о недостатках рассматриваемой теории, о её внутренней противоречивости. В науке очень часто обнаружение парадокса в рамках данной теории приводило к существенной перестройке всей теории и служило стимулом для дальнейших более глубоких исследований. В математике анализ парадоксов способствовал как пересмотру взглядов на проблему обоснования, так и развитию многих современных идей и методов. Этими вопросами занимается наука, называемая математической логикой.

СОБАКА И ЗАЯЦ

На охоте собака погналась за зайцем, находившимся от неё на расстоянии 100 сажен, но не догнала его. Охотники были весьма огорчены подобной неудачей, но вот один из них и говорит: «Эх, господа, стоит ли расстраиваться из-за такого пустяка? Да и стоит ли вообще гонять собак за зайцами? Всё равно собака его никогда догнать не сможет, даже в том случае, если побежит со скоростью в 10 раз большею. »

Как так?! – изумились охотники. – Что за вздор?

Какой там вздор, господа! Вовсе не вздор! И я вас уверяю, что всегда так будет!

Ну, что за чепуха! - сказали слушавшие. – Объясните, пожалуйста, как это может случиться?

А вот как1 Положим, например, что собаку вначале отделяет от зайца расстояние в 100 сажен. Если даже собака будет бежать в 10 раз скорее зайца, то когда она пробежит эти 100 сажен, заяц успеет пробежать ещё 10 сажен. Когда собака пробежит и эти 10 сажен, заяц пробежит ещё 1 сажень, и все-таки будет впереди собаки; когда собака пробежит и эту сажень, то заяц пробежит снова 1/10 сажени и т. д. Таким образом, заяц всегда будет впереди собаки, хотя бы на небольшое расстояние. Следовательно, собака никогда не догонит зайца. Этот парадокс известен очень давно и носит название «парадокс Зенона об Ахиллесе и черепахе».

КУЧА ПЕСКА

Два приятеля однажды вели такой разговор. «Видишь кучу песка?» - спросил первый. «Я-то её вижу, - ответил второй, - но её нет на самом деле». Первый удивился: «Почему?» -Очень просто,- ответил второй. - Давай рассудим: одна песчинка, очевидно, не образует кучи песка. Если n песчинок не могут образовать кучи песка, то и после прибавления ещё одной песчинки они по-прежнему не могут образовать кучи. Следовательно, никакое число песчинок не образует кучи, т. е. кучи песка нет. Этот парадокс носит название «парадокс кучи».

ПАРАДОКС «ЛЖЕЦ»

Наиболее известным и самым интересным из всех логических парадоксов является парадокс «Лжец». «Я – лжец» - говорит некто и впадает в неразрешимое противоречие! Ведь если он действительно лжец, он солгал, говоря, что он лжец, и, следовательно, он не лжец; но если он не лжец, он сказал правду и, следовательно, он лжец.

Парадокс «Лжец» произвел громадное впечатление на греков. И легко понять почему. Вопрос, который в нем ставится, с первого взгляда кажется совсем простым: лжет ли тот, кто говорит только то, что он лжет? Но ответ «да» приводит к ответу «нет», и наоборот. И размышление ничуть не проясняет ситуацию. За простотой и даже обыденностью вопроса оно открывает какую-то неясную и неизмеримую глубину.

Ходит даже легенда, что некий Филлит Косский, отчаявшись разрешить этот парадокс, покончил с собой. Говорят также, что один из известных древнегреческих логиков, Диодор Кронос, уже на склоне лет дал обет не принимать пищу до тех пор, пока не найдет решение «Лжеца», и вскоре умер, так ничего и не добившись.

Софизмом называется умышленное умозаключение, которое имеет видимость правильного. Каков бы ни был софизм, он обязательно содержит одну или несколько замаскированных ошибок. Особенно часто в математических софизмах выполняются «запрещенные» действия или не учитываются условия применимости теорем, формул и правил. Иногда рассуждения ведутся с использованием ошибочного чертежа или опираются на приводящие к ошибочным заключениям «очевидности». Встречаются софизмы, содержащие и другие ошибки.

В истории развития математики софизмы играли существенную роль. Они способствовали повышению строгости математических рассуждений и содействовали более глубокому уяснению понятий и методов математики.

Чем же полезны софизмы для изучающих математику?

Разбор софизмов прежде всего развивает логическое мышление, т. е. прививает навыки правильного мышления. Обнаружить ошибку в софизме – это значит осознать её, а осознание ошибки предупреждает от повторения её в других математических рассуждениях.

Разбор софизмов помогает сознательному усвоению изучаемого математического материала, развивает наблюдательность, вдумчивость и критическое отношение к тому, что изучается. Математические софизмы приучают внимательно и настороженно продвигаться вперед, тщательно следить за точностью формулировок, правильностью записей и чертежей, за допустимостью обобщений, за законностью выполняемых операций.

Наконец, разбор софизмов увлекателен. Только очень сухого человека не может увлечь интересный софизм. Как приятно бывает обнаружить ошибку в математическом софизме и тем как бы восстановить истину в её правах. Рассмотрим некоторые софизмы.

СОФИЗМ «РОГАТЫЙ»

То, что ты не потерял, ты имеешь; ты не потерял рога, следовательно, ты их имеешь.

Ошибка здесь состоит в неправильном переходе от общего правила к частному случаю, который этим правилом не предусмотрен. Действительно, начало первой фразы: «То, что ты не потерял» подразумевает под словом «то» - всё, что ты имеешь, и ясно, что в него не включены «рога». Поэтому заключение «ты имеешь рога» неправомерно.

РАВЕН ЛИ ПОЛНЫЙ СТАКАН ПУСТОМУ?

Оказывается, что да. Действительно, проведем следующее рассуждение. Пусть имеется стакан, наполненный водой до половины. Тогда можно написать, что стакан, наполовину полный равен стакану, наполовину пустому. Увеличивая обе части равенства вдвое, получим, что стакан полный равен стакану пустому.

Ясно, что приведенное рассуждение неверно, так как в нем применяется неправомерное действие: увеличение вдвое. В данной ситуации его применение бессмысленно.

ПОСЛЕДНИЕ ГОДЫ НАШЕЙ ЖИЗНИ КОРОЧЕ, ЧЕМ ПЕРВЫЕ.

Известно старое изречение: в молодости время идёт медленнее, а в старости скорее. Это изречение можно доказать математически. Действительно, человек в течение тридцатого года проживает 1/30 часть своей жизни, в течение сорокового года – 1/40 часть, в течение пятидесятого – 1/50 часть, в течение шестидесятого – 1/60 часть. Совершенно очевидно, что

1/30>1/40>1/50>1/60, откуда ясно, что последние годы нашей жизни короче первых.

Не подвела ли математика?

Действительно, верно, что 1/30>1/40>1/50>1/60. Но неверно утверждение, что в течение тридцатого года человек проживает 1/30 часть своей жизни, он проживает 1/30 только той части жизни, которую он к этому моменту прожил, но именно части, а не всей жизни. Нельзя сравнивать между собой части различных отрезков времени.

ДВАЖДЫ ДВА РАВНО ПЯТИ.

Напишем тождество 4:4=5:5. Вынеся их каждой части тождества общие множители за скобки, получаем: 4∙ (1:1) = 5∙ (1:1) или (2 ∙2) ∙ (1:1) = 5∙ (1:1).

Так как 1:1=1, то 2∙2=5.

Ошибка сделана при вынесении общих множителей 4 из левой части и 5 из правой части. Действительно, 4:4=1:1, но 4:4 ≠ 4∙(1:1).

ЛЮБОЕ ЧИСЛО РАВНО НУЛЮ.

Пусть a – любое фиксированное число. Рассмотрим уравнение 3х2-3ах+а2=0. Перепишем его следующим образом: 3х2-3ах=-а2. Умножая обе части его на –а, получим уравнение -3х2а+3а2х=а3. Прибавляя к обеим частям этого уравнения х3-а3, получаем уравнение х3-3ах2+3а2х-а3=х3 или (х-а)3=х3, откуда х-а=х, т. е. а=0.

При а≠0 не существует числа х, удовлетворяющего уравнению 3х2-3ах+а2=0. Это следует из того, что дискриминант этого квадратного уравнения D= -3а2

В ходе работы моя гипотеза подтвердилась: софизмы и парадоксы строятся исключительно по законам логики.

Рассмотренные парадоксы и софизмы – это только часть из всех обнаруженных к настоящему времени. Вполне вероятно, что в будущем откроют и многие другие парадоксы, и даже совершенно новые их типы.

С течением времени отношение к парадоксам стало более спокойным и даже более терпимым, чем в момент их обнаружения. Дело не только в том, что парадоксы сделались чем-то привычным. И не в том, что с ними смирились. Поиски их решений активно продолжаются. Ситуация изменилась прежде всего потому, что парадоксы оказались локализованными. Они обрели своё определенное место в широком спектре логических исследований. Стало ясно, что абсолютная строгость – это в принципе недостижимый идеал.

О многом шла речь в этой работе. Ещё больше интересных и важных тем осталось за её пределами. Логика – это особый, самобытный мир со своими законами, условностями, традициями, спорами. То, о чем говорит эта наука, знакомо и близко каждому. Но войти в её мир, почувствовать его внутреннюю согласованность и динамику, проникнуться его своеобразным духом непросто.



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама