THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

СТРУКТУРНАЯ СХЕМА, ПРИНЦИП ДЕЙСТВИЯ И ТАКТИКО-ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ РЛС

Существует несколько вариантов построения структурной схемы первичной РЛС третьего поколения. Ниже рассматривается один из возможных вариантов, в котором используются современным достижения науки и техники. В качестве систем-аналогов выбраны отечественные РЛС «Скала-М», «Скала-МПР» и «Скала-МПА». Особенности построения зарубежных РЛС АТСR-22 , АТСR-44 обсуждаются в данной главе в плане сравнения с отечественными РЛС. Различия в.построении трассовых и аэродромных РЛС поясняются по мере необходимости/

На рис. 1.1 приведена структурная схема первичной импульсной РЛС кругового обзора. Главными особенностями этой схемы являются:

· применение двух приемопередающих каналов с разносом частот;

· применение двулучевой диаграмма направленности антенны в вертикальной плоскости на прием отраженных от целей сигналов;

· применение истинно-когерентного метода селекции движущихся целей.

Первая особенность РЛС связана, с применением одного из методов повышения ее энергетического потенциала метода разноса частот, который заключается в следующем. Два передатчика А и В работают одновременно

Рис 1.1. Структурная схема первичной РЛС

на общую антенну в режиме импульсной модуляции с различными несущими частотами и зондирующих радиоимпульсов. Между этими радиоимпульсами имеет место небольшой временной сдвиг, который составляет обычно 4 -6 мкс. Разнос по частоте не превышает 40 -60 МГц. Отраженные от цели сигналы с разными частотами разделяются с помощью СВЧ фильтров и усиливаются двумя приемными каналами А и В , настроенными на соответствующие частоты. После детектирования видеосигналы каналов А и В объединяются и далее обрабатываются совместно. В простейшем случае производятся совмещение видеосигналов по времени с помощью линий задержки и сложение по амплитуде.

Синхронизация в РЛС осуществляется таким образом, что один из каналов (А) является ведущим, а другой -ведомым.

Радиолокационные станции такого рода при произвольном числе частотных каналов называются частотно-многоканальными РЛС с общей для всех каналов антенной. Преимущества частотно-многоканальной РЛС перед одноканальной состоят в следующем:

· увеличивается суммарная мощность излучения РЛС при наличии ограничений мощности отдельного передатчика;

· увеличиваются дальность обнаружения целей и точность измерения координат;

· увеличиваются надежность работы РЛС и ее помехозащищенность по отношению к помехам искусственного и естественного происхождения.

Увеличение дальности обнаружения и точности измерения координат целей объясняется тем, что при достаточно большом разносе несущих частот излучаемых сигналов



f a -f b =Df ³ c/l ц,

где с - скорость распространения радиоволн, l ц - линейный размер цели.

Принимаемые сигналы и помехи в каналах А и В оказываются некоррелированными, и сумма выходных напряжений этих каналов, характеризуется гораздо меньшими флюктуациями амплитуды в процессе наблюдения сложной движущейся цели, чем в случае приема сигнала на одной частоте. Этим же эффектом сглаживания флюктуации объясняется и возможность более эффективного подавления мешающих отражений от земной поверхности и местных предметов. Например, для РЛС АТСR-22 и АТСR-44 дальность действия в двухчастотном режиме -работы на 20 -30% больше, чем в одночастотном. Надежность работы РЛС при использовании двух каналов с разносом частот выше, чем одноканальной РЛС, благодаря тому, что при отказе одного канала или выключении его для технического обслуживания данная РЛС способна выполнять своя функции при допустимом ухудшении некоторых показателей (уменьшений дальности действия и коэффициента готовности РЛС).

Другой важной особенностью рассматриваемой РЛС является использование дополнительного луча диаграммы направленности антенны в вертикальной плоскости для приема сигналов, отраженных от целей при больших значениях угла места. При этом зона обнаружения РЛС в вертикальной плоскости формируется с помощью двух лучей: основного (нижнего) луча при работе основного облучателя антенны в режимах передачи и приема, и дополнительного (верхнего) луча при работе дополнительного облучателя антенны только в режиме приема. Применение двухлучевой ДНА на прием отраженных от целей сигналов реализует один из методов борьбы с мешающими отражениями от земной поверхности и местных предметов. Подавление этих отражений осуществляется путем весового суммирования сигналов, принимаемых по основному и дополнительному лучам ДНА. Направление максимального излучения по верхнему лучу размещается в вертикальной плоскости обычно на 3 -5° выше, чем по нижнему. При этом методе борьбы с помехами достигается ослабление сигналов от местных предметов на 15 -20 дБ.

В некоторых типах РЛС зона обнаружения в вертикальной плоскости формируется с учетом применения локальной обработки принимаемых сигналов в системе СДЦ. Такой принцип формирования зоны обнаружения на примере трассовой РЛС показан на рис. 1.2. Вся зона обнаружения дальности разбивается на четыре участка 1 -1V. Границы участков задаются по жесткой программе в зависимости от конкретных, условий размещения РЛС. На рис. 1.2 обозначены:

К 1 -верхняя граница использования сигналов дополнительного луча 2, обработанных в системе СДЦ (Доп. СДЦ);

Рис. 1.2. К-принципу формирования зоны - трассовой РЛС: 1 - основной луч; 2 - дополнительный луч

К 2 - верхняя граница использования сигналов основного луча 1, обработанных в системе СДЦ (Осн. СДЦ);

А - верхняя граница использования сигналов дополнительного луча 2, не обработанных в системе СДЦ (Доп. А);

Д мах - максимальная дальность действия РЛС, являющаяся верхней границей использования необработанных в системе СДЦ сигналов основного луча 1.

(Осн. А), положение границ К 1 , К 2 и А регулируется по дальности в пределах, указанных на рисунке. Для участка III предусмотрено использование двух подпрограмм, определяемых порядком следования заданных границ (импульсов переключения); К 1 - А - К 2 или К 1 - К 2 -А. Данный принцип формирования зоны обнаружения позволяет:

· получить максимальное обнаружение в вертикальной плоскости для подавления помех от местных предметов на начальном участке дальности 1;

· свести к минимуму область воздушного пространства, где используется сумма сигналов Осн. СДЦ +Доп. СДЦ, и тем самым уменьшить влияние скоростной характеристики системы СДЦ (участок II);

· при наличии помех типа «ангелов», которые не устраняются полностью системой СДЦ, целесообразно использовать сигнал дополнительного луча (участок 111 при К 2 <А).

Совместное использование в РЛС двухлучевой ДНА на прием и локальной обработки сигналов в системе СДЦ обеспечивает общее подавление помех от местных предметов на 45 -56 дБ при наличии двукратного череспериодного вычитания в системе СДЦ и на 50 -55 дБ - при трехкратном вычитании.

Необходимо отметить, что рассмотренный принцип формирования зоны обнаружения может применяться как в одночастотном, так и в двухчастотном режиме работы РЛС с разносом частот.

Отличие двухчастотного режима состоит в том, что при формировании зоны обнаружения используются суммы необработанных в системе СДЦ сигналов Осн А А + Осн в - А и Доп а -А+Доп б -А, а в системе СДЦ обрабатываются только сигналы одного частотного канала (ведущего А, рис. 1.1).

Нетрудно заметить, что в основу описанного способа формирования зоны обнаружения «положена идея управлений структурой и параметрами РЛС в зависимости от помеховой обстановки в конкретных условиях эксплуатации. При этом управление осуществляется по жесткой программе. После предварительного анализа помеховой обстановки и задания границ К 1 , К 2 . и А между четырьмя участками дальности зоны обнаружения структура РЛС приобретает фиксированную конфигурацию и не меняется в процессе работы РЛС.

В других современных РЛС применяется более гибкий способ формирования зоны обнаружения, реализующий идею динамической адаптации РЛС к помеховой обстановке. Такой способ используется, например, в РЛС АТСR-22 и АТСR-44. При этом вся зона обнаружения по дальности разбивается на два равных участка (1 и 11). Участок 1, Для которого характерно наибольшее влияние помех от местных предметов, разбивается на более мелкие элементы по дальности (16 элементов)..Зона обзора по азимуту равная 360°, тоже разбивается на элементарные секторы по 5,6° (64 сектора). В результате вся зона обзора в горизонтальной плоскости в пределах первой половины максимальной дальности действия РЛС получается разбитой на 16*64=1024 ячейки. В течение рабочего цикла, равного трем периодам обзора, осуществляется анализ помеховой обстановки и в специальном запоминающем устройстве РЛС формируется текущая карта помех содержащая информацию об уровне помех в каждой из 1024 ячеек. На основе этой, информации производится выбор весовых коэффициентов для формирования взвешенной суммы сигналов принятых по основному и дополнительному лучам ДНА, для каждой из этих ячеек в отдельности. В результате зона обнаружения РЛС в вертикальной плоскости приобретает сложную конфигурацию: нижняя кромка зоны обнаружения в разных ячейках имеет различный наклон (-0,5; 0,1; 0,5 или 1°). На второй половине дальности, (участок II) используется только сигнал, принимаемый по основному лучу.

Сравнивая два рассмотренных способа формирования зоны обнаружения РЛС, необходимо отметить, что объединение сигналов основного и дополнительного лучей ДНА при первом способе производится на видеочастоте, а при втором способе - на высокой частоте. В последнем случае операция суммирования сигналов осуществляется в специальном устройстве - формирователе нижней кромки зоны обнаружения (ФНК, рис. 1.1). При этом для дальнейшей обработки суммарного сигнала используется один приемный канал, включая систему СДЦ. При первом способе необходимы два приемных канала, что приводит к усложнению аппаратуры. Кроме того, при втором способе более полно используются возможности системы СДЦ, так как обработке в этой системе подвергаются сигналы обоих частотных каналов РЛС, а не только сигнала ведущего канала, как при первом способе. Наряду с перечисленными достоинствами второй способ формирования зоны обнаружения обладает существенным недостатком, затрудняющим его широкое использование:

для суммирования сигналов на высокой частоте требуются высокая точность и стабильность формирования этих сигналов. Нарушение этого требования в процессе эксплуатации РЛС может привести к снижению степени подавления помех от местных предметов за счет применения двухлучевой диаграммы направленности антенны.

Рассмотрим принцип действия РЛС, структурная схема которой представлена на рис. 1.1. Данная РЛС работает в режиме кругового обзора по азимуту, обеспечивая обнаружение воздушных целей и измерение наклонной дальности и азимута этих целей. Круговой обзор осуществляется за счет механического вращения антенны РЛС, состоящей из параболического отражателя и, двух рупорных облучателей - основного и дополнительного. В качестве зондирующего сигнала используется периодическая последовательность радиоимпульсов с прямоугольными огибающими. При этом измерение азимута цели осуществляется амплитудным методом, основанным на использовании направленных свойств антенны РЛС в горизонтальной плоскости, а измерение дальности - временным методом путем измерения запаздывания отраженного от цели сигнала относительно момента излучения зондирующего сигнала.

Рассмотрим более подробно работу одного канала РЛС. Система синхронизации (СС) вырабатывает импульсы запуска РЛС, которые поступают на вход модулятора М передающего устройства. Модулятор М под воздействием импульсов запуска вырабатывает мощные модулирующие импульсы, поступающие на оконечный усилитель (ОУ) передатчика РЛС, выполненного по схеме «задающий генератор - усилитель мощности». Генератор радиочастоты (ГРЧ), стабилизированный кварцевым резонатором, генерирует непрерывные гармонические колебания с частотой f а, которые усиливаются в оконечном усилителе и модулируются по амплитуде импульсами модулятора (М). В результате на выходе ОУ формируется последовательность мощных когерентных радиоимпульсов с несущей частотой f а и прямоугольной: огибающей. Эти радиоимпульсы через антенный переключатель (АП) и блок сложения мощностей и разделения сигналов БСРС поступают в антенное устройство РЛС и излучаются антенной в направлении к цели.

Отраженные от цели радиоимпульсы с несущей частотой f а, принимаемые по основному лучу ДНА, через блоки БСРС, АП и малошумящий УРЧ поступают на один из входов формирователя нижней кромки (ФНК). Радиоимпульсы с той же частотой fд, принимаемые по дополнительному лучу ДНА, через блок разделения сигналов БРС и УРЧ поступают на второй вход ФНК. На выходе ФНК в результате весового суммирования сигналов основного и дополнительного лучей образуется суммарный сигнал, который поступает на вход приемника РЛС. Управляющий сигнал, определяющий выбор весовых коэффициентов при суммировании, поступает на управляющий вход ФНК от системы цифровой обработки сигналов и адаптации РЛС. В приемном устройстве осуществляются преобразование частоты, усиление и частотная селекция сигнала в усилителе промежуточной частоты и детектирование с помощью амплитудного и фазового детекторов. Видеосигнал А с выхода амплитудного детектора поступает далее в систему цифровой обработки, минуя систему СДЦ, а видеосигнал СДЦ с выхода фазового детектора поступает на вход системы СДЦ, входящей в состав системы цифровой обработки сигналов. Сигналы с опорными частотами f а1 и f а2 необходимые для работы преобразователя частоты и фазового детектора приемника, формируются общим задающим ГРЧ. Благодаря этому в данной РЛС реализуется истинно когерентный метол СДЦ.

Кроме описанных выше основных процессов, протекающих в аналоговой части РЛС, имеет место ряд вспомогательных процессов, которые обеспечивают нормальное функционирование РЛС. К ним относятся, например, различного рода автоматические регулировки усиления приемника:

· временная автоматическая регулировка усиления,

· шумовая автоматическая регулировка усиления,

· автоматическая ступенчатая регулировка усиления УПЧ с помощью схемы адаптивного аттенюатора помех.

Названные регулировки, исключая ШАРУ, обеспечивают сжатие динамического диапазона принимаемого радиолокационного сигнала и его согласование с динамическим диапазоном системы цифровой обработки сигналов и адаптации. С помощью ШАРУ обеспечивается стабилизация уровня шумов на выходе приемника РЛС.

В антенно-фидерной системе РЛС предусмотрены:

· устройства для плавной регулировки поляризации излучаемых колебаний,

· измерители проходящей мощности, частоты и формы зондирующего сигнала.

В псевдокогерентных РЛС, использующих передающие устройства, выполненные на магнетроне, в состав приемника входит также система автоматической подстройки частоты магнетрона. Эта система служит для подстройки частоты магнетрона и для фазирования когерентного гетеродина, генерирующего опорные колебания для системы СДЦ.

В рассматриваемой истинно когерентной РЛС для обеспечения постоянной разности частот f а и f б двух частотных каналов используется специальный генератор сдвига частоты, с помощью которого под воздействием колебаний ГРЧ канала А (см. рис. 1.1) в канале В осуществляется формирование колебаний с частотами f б и f б1 , сдвинутыми относительно частот f а и f а1 .

Цифровая часть РЛС начинается со входа системы цифровой обработки сигналов и адаптации РЛС. Главными функциями этой системы являются:

· очистка принимаемого сигнала от различного рода помех,

· выделение полезной информации для обеспечения заданных тактико-технических характеристик РЛС,

· анализ текущей помеховой обстановки,

· автоматическое управление режимами работы и параметрами РЛС (функция адаптации).

Входные видеосигналы А, СДЦ и Метео, поступающие с выхода приемника, преобразуются с помощью аналого-цифровых преобразователей в цифровую форму. При этом осуществляется дискретизация по времени и многоуровневое квантование по- амплитуде этих сигналов.

Первая функция системы обработки реализуется с помощью следующих цифровых устройств:

· устройства череспериодного (двойного или тройного) вычитания системы СДЦ;

· видеокоррелятора для подавления несинхронных помех и отраженных сигналов предыдущею периода зондирования;

· устройства ЛОГ-МПВ-АнтиЛОГ для выделения полезного сигнала на фоне помех от протяженных по дальности и азимуту целей (в частности, помех от метеообразований);

· устройства выделения сигналов для получения информации о контурах метеообразований.

При выполнении второй функции системы обработки используются следующие устройства:

· устройство секторизации для разделения зоны обзора на ячейки и распределения памяти системы;

· картограф помех для формирования динамической карты помех;

· анализаторы параметров принимаемых сигналов, с помощью которых проводится анализ текущей помеховой обстановки (анализаторы уровня сигнала в тракте промежуточной частоты, частоты ложных тревог, параметров сигналов от метеообразований и др.);

· оперативные запоминающие устройства для хранения информации о текущей помеховой обстановке;

· управляющие устройства для формирования сигналов управления режимами работы и параметрами РЛС, которые определяют:

· выбор весовых коэффициентов для ФНК,

· выбор режима А или СДЦ,

· включение или отключение устройства ЛОГ-МПВ-АнтиЛОГ,

· подстройку порога обнаружения при стабилизации уровня ложных тревог,

· другие параметры обработки сигналов для каждого участка или ячейки зоны обзора отдельно.

Устройство S (см. рис. 1.1) осуществляет объединение сигналов двух частотных каналов РЛС. С выхода этого устройства в АПОИ передаются два объединенных сигнала: сигнал А (или СДЦ) и сигнал Метео. В РЛС, не содержащих собственной АПОИ, эти сигналы преобразуются с помощью цифро-аналоговых преобразователей в аналоговую форму и передаются на входы АПОИ, сопрягаемой с РЛС, контрольного индикатора (КИ) и широкополосной линии связи ШЛС. Последняя обеспечивает передачу радиолокационной информации в необработанном виде, т. е. минуя АПОИ, на аппаратуру отображения неавтоматизированной системы УВД.

Аппаратура первичной обработки информации обычно представляет собой универсальную аппаратуру, сопрягаемую с различными типами РЛС. В этой аппаратуре осуществляются операции обнаружения сигналов от воздушных целей и измерения их координат, а также объединение информации первичной РЛС с информацией вторичного радиолокатора. С выхода АПОИ радиолокационная информация в цифровом виде транслируется в центр УВД с помощью узкополосной аппаратуры передачи данных АПД. Кроме того, эта же информация поступает на контрольный индикатор КИ первичной РЛС. Для синхронизации АПОИ, КИ и аппаратуры отображения, подключаемой через ШЛС, используются сигналы, вырабатываемые системой синхронизации СС, а также сигнал текущего азимутального направления ДНА первичной РЛС, поступающий из антенно-фидерной системы. В универсальных АПОИ обычно предусматривается автономный синхронизатор, позволяющий вести обработку и выдачу сигналов в оптимальном темпе независимо от временных режимов работы первичного и вторичного радиолокаторов. Для этого на входе АПОИ предусматриваются буферные запоминающие устройства, управляемые тактовыми импульсами и сигналами угловой информации названных радиолокаторов. Дальнейшая обработка в АПОИ производится с помощью управляющих сигналов, вырабатываемых автономным синхронизатором АПОИ.

Важной особенностью рассматриваемой перспективной РЛС является использование системы автоматического встроенного контроля (АВК), обеспечивающей допусковый контроль аналоговых и тестовый контроль цифровых устройств и систем РЛС.

Конструктивно РЛС выполняется из отдельных сборочных единиц - модулей, при комплектации которых в определенных комбинациях можно получить несколько вариантов РЛС, различающихся по дальности действия, надежности и стоимости. Этим достигается рациональное использование оборудования РЛС с учетом конкретных условий применения.

Передающий тракт любой РЛС состоит из передающего устройства, фидерной системы и антенны. Радиопередающее устройство предназначено для формирования зондирующих сигналов путем преобразования энергии источников питания в энергию высокочастотных (ВЧ) колебаний и управления параметрами этих колебаний. Для этого в состав передающего устройства обычно включают источник питания, модулятор (управляющее устройство) и генератор.

Источник питания обеспечивает подачу энергии в виде переменного или постоянного тока. Во втором случае источник питания выполняется в виде высоковольтного выпрямителя. Оба типа источников нашли применение в бортовых РЛС.

Модулятор осуществляет управление параметрами огибающей ВЧ сигнала.

Генератор вырабатывает мощный ВЧ сигнал, параметры которого определяются управляющими сигналами модулятора.

Первая группа - с непрерывным излучением (без модуляции и с модуляцией излучаемых колебаний по амплитуде, частоте и фазе). Подобные передающие устройства используются в бортовых радиолокационных системах, предназначенных для определения путевой скорости и угла сноса самолета (по доплеровскому изменению частоты), трансляции радиолокационной информации и т.д.

Вторая группа - передатчики, работающие в импульсном режиме излучения с длительностью ВЧ-импульсов от долей микросекунды до сотен миллисекунд и скважностью от единиц до сотен тысяч. В таких передающих устройствах может применяться амплитудная, частотная и фазовая модуляции ВЧ-колебаний как внутри отдельного импульса, так и в последовательности импульсов. Кроме того, могут использоваться и специфические виды модуляции (по длительности импульса, кодово-импульсная и т.п.).

Структурная схема передатчика с однокаскадным генератором

Современная война стремительна и быстротечна. Зачастую победителем в боевом столкновении выходит тот, кто первым сумеет обнаружить потенциальную угрозу и адекватно на нее среагировать. Уже более семидесяти лет для поиска противника на суше, море и в воздухе используется метод радиолокации, основанный на излучении радиоволн и регистрации их отражений от различных объектов. Устройства, посылающие и принимающие подобные сигналы, называются радиолокационными станциями (РЛС) или радарами.

Термин «радар» - это английская аббревиатура (radio detection and ranging), которая была запущена в оборот в 1941 году, но давно уже стала самостоятельным словом и вошла в большинство языков мира.

Изобретение радара – это, безусловно, знаковое событие. Современный мир трудно представить без радиолокационных станций. Их используют в авиации, в морских перевозках, с помощью РЛС предсказывается погода, выявляются нарушители правил дорожного движения, производится сканирование земной поверхности. Радиолокационные комплексы (РЛК) нашли свое применение в космической промышленности и в системах навигации.

Однако наиболее широкое применение радары нашли в военном деле. Следует сказать, что эта технология изначально создавалась для военных нужд и дошла до стадии практической реализации перед самым началом Второй мировой войны . Все крупнейшие страны-участницы этого конфликта активно (и не без результата) использовали радиолокационные станции для разведки и обнаружения судов и самолетов противника. Можно уверенно утверждать, что применение радаров решило исход нескольких знаковых сражений как в Европе, так и на Тихоокеанском театре боевых действий.

Сегодня РЛС используются для решения чрезвычайно широкого спектра военных задач, от отслеживания запуска межконтинентальных баллистических ракет до артиллерийской разведки. Каждый самолет, вертолет, военный корабль имеет собственный радиолокационный комплекс. Радары являются основой системы противовоздушной обороны. Новейший радиолокационный комплекс с фазированной антенной решеткой будет установлен на перспективный российский танк «Армата». Вообще же, многообразие современных радаров поражает. Это абсолютно разные устройства, которые отличаются размерами, характеристиками и назначением.

С уверенностью можно заявить, что сегодня Россия является одним из признанных мировых лидеров в области разработки и производства РЛС. Однако прежде чем говорить о тенденциях развития радиолокационных комплексов, следует сказать несколько слов о принципах работы радаров, а также об истории радиолокационных систем.

Как работает радиолокатор

Локацией называют способ (или процесс) определения месторасположения чего-либо. Соответственно, радиолокация – это метод обнаружения предмета или объекта в пространстве при помощи радиоволн, которые излучает и принимает устройство под название радиолокатор или РЛС.

Физический принцип работы первичного или пассивного радара довольно прост: он передает в пространство радиоволны, которые отражаются от окружающих предметов и возвращаются к нему в виде отраженных сигналов. Анализируя их, радар способен обнаружить объект в определенной точке пространства, а также показать его основные характеристики: скорость, высоту, размер. Любая РЛС – это сложное радиотехническое устройство, состоящее из многих компонентов.

В состав любого радара входит три основных элемента: передатчик сигнала, антенна и приёмник. Все радиолокационные станции можно разделить на две большие группы:

  • импульсные;
  • непрерывного действия.

Передатчик импульсной РЛС испускает электромагнитные волны в течение краткого промежутка времени (доли секунды), следующий сигнал посылается только после того, как первый импульс вернется обратно и попадет в приемник. Частота повторения импульса – одна из важнейших характеристик РЛС. Радиолокаторы низкой частоты посылают несколько сотен импульсов в минуту.

Антенна импульсного радара работает и на прием, и на передачу. После испускания сигнала передатчик отключается на время и включается приёмник. После его приема происходит обратный процесс.

Импульсные РЛС имеют как недостатки, так и преимущества. Они могут определять дальность сразу нескольких целей, подобный радар вполне может обходиться одной антенной, индикаторы подобных устройств отличаются простотой. Однако при этом сигнал, испускаемый подобным РЛС должен иметь довольно большую мощность. Также можно добавить, что все современные радары сопровождения выполнены по импульсной схеме.

В импульсных радиолокационных станциях в качестве источника сигнала обычно используют магнетроны, или лампы бегущей волны.

Антенна РЛС фокусирует электромагнитный сигнал и направляет его, улавливает отраженный импульс и передает его в приемник. Существуют радиолокаторы, в которых прием и передача сигнала производятся разными антеннами, причем они могут находиться друг от друга на значительном расстоянии. Антенна РЛС способна испускать электромагнитные волны по кругу или работать в определенном секторе. Луч радара может быть направлен по спирали или иметь форму конуса. Если нужно, РЛС может следить за движущейся целью, постоянно направляя на нее антенну с помощью специальных систем.

В функции приемника входит обработка полученной информации и передача ее на экран, с которого она считывается оператором.

Кроме импульсных РЛС, существуют и радары непрерывного действия, которые постоянно испускают электромагнитные волны. Такие радиолокационные станции в своей работе используют эффект Доплера. Он заключается в том, что частота электромагнитной волны, отраженной от объекта, который приближается к источнику сигнала, будет выше, чем от удаляющегося объекта. При этом частота испускаемого импульса остается неизменной. Радиолокаторы подобного типа не фиксируют неподвижные объекты, их приемник улавливает лишь волны с частотой выше или ниже испускаемой.

Типичным доплеровским радиолокатором является радар, который используют сотрудники дорожной полиции для определения скорости автомобилей.

Основной проблемой радаров непрерывного действия является невозможность с их помощью определять расстояние до объекта, зато при их работе не возникает помех от неподвижных предметов между РЛС и целью или за ней. Кроме того, доплеровские радары – это довольно простые устройства, которым для работы достаточно сигналов малой мощности. Также нужно отметить, что современные радиолокационные станции с непрерывным излучением имеют возможность определять расстояние до объекта. Для этого используется изменение частоты РЛС во время работы.

Одной из главных проблем в работе импульсных РЛС являются помехи, которые идут от неподвижных объектов — как правило, это земная поверхность, горы, холмы. При работе бортовых импульсных радаров самолетов все объекты, находящиеся ниже, «затеняются» сигналом, отраженным от земной поверхности. Если говорить о наземных или судовых радиолокационных комплексах, то для них эта проблема проявляется в обнаружении целей, летящих на малых высотах. Чтобы устранить подобные помехи используется все тот же эффект Доплера.

Кроме первичных РЛС, существуют и так называемые вторичные радиолокаторы, которые используются в авиации для опознания воздушных судов. В состав таких радиолокационных комплексов, кроме передатчика, антенны и приемного устройства, входит еще и самолетный ответчик. При облучении его электромагнитным сигналом ответчик выдает дополнительную информацию о высоте, маршруте, номере борта, его государственной принадлежности.

Также радиолокационные станции можно разделить по длине и частоте волны, на которой они работают. Например, для исследования поверхности Земли, а также для работы на значительных дистанциях используются волны 0,9-6 м (частота 50-330 МГц) и 0,3-1 м (частота 300-1000 МГц). Для управления воздушным движением применяется РЛС с длиной волны 7,5-15 см, а загоризонтные радары станций обнаружения ракетных пусков работают на волнах с длиной от 10 до 100 метров.

История радиолокации

Идея радиолокации возникла практически сразу после открытия радиоволн. В 1905 году сотрудник немецкой компании Siemens Кристиан Хюльсмейер создал устройство, которое с помощью радиоволн могло обнаружить крупные металлические объекты. Изобретатель предлагал устанавливать его на кораблях, чтобы они могли избегать столкновений в условиях плохой видимости. Однако судовые компании не заинтересовались новым прибором.

Проводились эксперименты с радиолокацией и в России. Еще в конце XIX века русский ученый Попов обнаружил, что металлические объекты препятствуют распространению радиоволн.

В начале 20-х годов американские инженеры Альберт Тейлор и Лeo Янг сумели с помощью радиоволн засечь проплывающее судно. Однако состояние радиотехнической промышленности того времени было таково, что создать промышленные образцы радиолокационных станций было затруднительно.

Первые радиолокационные станции, которые можно было использовать для решения практических задач, появились в Англии примерно в середине 30-х годов. Эти устройства были очень большими, устанавливать их можно было только на суше или на палубе больших кораблей. Только в 1937 году был создан прототип миниатюрной РЛС, которую можно было установить на самолет. К началу Второй мировой войны англичане имели развернутую цепь радиолокационных станций под названием Chain Home.

Занимались новым перспективным направлением и в Германии. Причем, нужно сказать, небезуспешно. Уже в 1935 году главнокомандующему германского флота Редеру был продемонстрирован действующий радиолокатор с электронно-лучевым дисплеем. Позже на его основе были созданы серийные образцы РЛС: Seetakt для военно-морских сил и Freya для ПВО. В 1940 году в немецкую армию стала поступать система радиолокационная управления огнем Würzburg.

Однако несмотря на очевидные достижения германских ученых и инженеров в области радиолокации, немецкая армия начала использовать радиолокаторы позже англичан. Гитлер и верхушка Рейха считали радары исключительно оборонительным оружием, которое не слишком нужно победоносной немецкой армии. Именно по этой причине к началу битвы за Британию у немцев было развернуто только восемь радиолокационных станции Freya, хотя по своим характеристикам они как минимум не уступали английским аналогам. В целом же можно сказать, что именно успешное использование радаров во многом определило исход битвы за Британию и последующее противостояние между Люфтваффе и ВВС союзников в небе Европы.

Позже немцы на основе системы Würzburg создали рубеж ПВО, который получил название «линии Каммхубера». Используя подразделения специального назначения, союзники сумели разгадать секреты работы немецких радаров, что позволило эффективно глушить их.

Несмотря на то, что англичане вступили в «радарную» гонку позже американцев и немцев, на финише они сумели обогнать их и подойти к началу Второй мировой войны с самой продвинутой системой радиолокационного обнаружения самолетов.

Уже в сентябре 1935 года англичане приступили к постройке сети радиолокационных станций, в состав которой перед войной уже входили двадцать РЛС. Она полностью перекрывала подлет к Британским островам со стороны европейского побережья. Летом 1940 года британскими инженерами был создан резонансный магнетрон, позже ставший основой бортовых радиолокационных станций, устанавливаемых на американских и британских самолетах.

Работы в области военной радиолокации велись и в Советском Союзе. Первые успешные эксперименты по обнаружению самолетов с помощью радиолокационных станций в СССР были проведены еще в середине 30-х годов. В 1939 году на вооружение РККА была принята первая РЛС РУС-1, а в 1940 году – РУС-2. Обе эти станции были запущены в серийное производство.

Вторая мировая война наглядно показала высокую эффективность использования радиолокационных станций. Поэтому после ее окончания разработка новых РЛС стала одним из приоритетных направлений развития военной техники. Бортовые радиолокаторы со временем получили все без исключения военные самолеты и корабли, РЛС стали основой для систем противовоздушной обороны.

В период Холодной войны у США и СССР появилось новое разрушительное оружие – межконтинентальные баллистические ракеты. Обнаружение запуска этих ракет стало вопросом жизни и смерти. Советский ученый Николай Кабанов предложил идею использования коротких радиоволн для обнаружения самолетов противника на больших расстояниях (до 3 тыс. км). Она была довольно проста: Кабанов выяснил, что радиоволны длиной 10-100 метров способны отражаться от ионосферы, и облучая цели на поверхности земли, возвращаться тем же путем к РЛС.

Позже на основе этой идеи были разработаны радиолокаторы загоризонтного обнаружения запуска баллистических ракет. Примером таких РЛС может служить «Дарьял» - радиолокационная станция, которая несколько десятилетий была основой советской системы предупреждения о ракетных пусках.

В настоящее время одним из самых перспективных направлений развития радиолокационной техники считается создание РЛС с фазированной антенной решеткой (ФАР). Подобные радары имеют не один, а сотни излучателей радиоволн, работой которых руководит мощный компьютер. Радиоволны, испускаемые разными источниками в ФАР, могут усиливать друг друга, если они совпадают по фазе, или же, наоборот, ослаблять.

Сигналу РЛС с фазированной решеткой можно придавать любую необходимую форму, его можно перемещать в пространстве без изменения положения самой антенны, работать с разными частотами излучения. РЛС с фазированной решеткой гораздо надежней и чувствительней, чем радиолокатор с обычной антенной. Однако у подобных радаров есть и недостатки: большой проблемой является охлаждение РЛС с ФАР, кроме того, они сложны в производстве и дорого стоят.

Новые радиолокационные станции с фазированной решеткой устанавливаются на истребители пятого поколения. Эта технология используется в американской системе раннего предупреждения о ракетном нападении. Радиолокационный комплекс с ФАР будет установлен на новейший российский танк «Армата». Следует отметить, что Россия является одним из мировых лидеров в разработке радиолокаторов с ФАР.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

3. СТРУКТУРНАЯ СХЕМА РЛС

Импульсные РЛС, осуществляющие когерентный прием и содержащие устройство ЧПК, называют РЛС с селекцией движущихся целей (РЛС с СДЦ).

Основная цель использования РЛС с СДЦ является режекция сигналов пассивныхпомех от неподвижных целей (зданий, холмов, деревьев), и выделение сигналов отраженных от движущихся целей для их дальнейшего использования в обнаружителях и отображения радиолокационной обстановки на индикаторе.

РЛС с СДЦ подразделяются на истинно-когерентные и псевдо-когерентные.

В истинно-когерентных РЛС зондирующий сигнал представляет собой когерентную последовательность радиоимпульсов с одинаковой начальной фазой всех радиоимпульсов или с известной разностью начальных фаз радиоимпульсов отстоящих на .

В псевдо-когерентных РЛС зондирующий сигнал представляет собой некогерентную последовательность радиоимпульсов, но при обработке принятых сигналов случайность начальных фаз используется таким образом, что прием становится когерентным.

Другими словами, как в истинно-когерентных РЛС, так и в псевдо- когерентных РЛС сигнал на выходе линейного тракта приемника, полученный при отражении зондирующего сигнала от неподвижной точечной цели, представляет собой импульсную когерентную пачку с одинаковыми начальными фазами радиоимпульсов, а при отражении от подвижной точечной цели, движущейся с радиальной скоростью начальные фазы радиоимпульсов в соседних периодах повторения отличается на .

При анализе работы когерентно-импульсных РЛС обычно делается допущение, что в пределах главного "луча" диаграмма направленности постоянна, а вне главного "луча" излучение и прием не проводятся. Это допущение позволяет считать, что даже с учетом сканирования антенны амплитуды всех импульсов когерентной пачки, полученной при отражении зондирующего сигнала от точечной подвижной или неподвижной цели, одинаковы.

Истинно-когерентные РЛС строятся на базе многокаскадного передатчика с усилителями мощности на выходе, а псевдо-когерентные РЛС - на базе высокочастотного генератора.

Для проектируемой РЛС необходимо использовать сложный сигналы с , для этого, как правило, используются истинно-когерентные РЛС.

На рис.3.1 приведена упрощенная структурная схема одного из вариантов истинно-когерентных РЛС.


Рис. 3.1 Обобщенная структурная схема РЛС

Развернутая структурная схема истинно-когерентной РЛС приведена в приложении 3.

В данной РЛС с СДЦ в качестве передатчика используется усилитель мощности (УМ) с импульсной модуляцией, а опорный сигнал формируется с помощью стабильного генератора (СГ) гармонических колебаний на частоте f пр. Преимущество данной схемы состоит в том, что она позволяет применить активный способ формирования ФМС не только на несущей частоте, но и на более низких радиочастотах.

Сигнал от стабильного генератора (СГ) в качестве опорного подается на когерентный детектор (КД). Он же поступает на формирователь ФМ сигнала (ФФМС) и далее, на смеситель (СМ1), куда одновременно подается сигнал от местного гетеродина (МГ), генерирующего гармоническое колебание на частоте f мг =f 0 -f пр. Колебания с выхода СМ1 на частоте f 0 поступают на усилитель мощности (УМ), в котором происходит усиление и импульсная модуляция гармонического ФМ колебания частотой f 0 . На выходе усилителя мощности получаются ФМ импульсы требуемой мощности и длительности, следующие с частотой f п. Эти импульсы через антенный переключатель (АП) поступают на антенну.

В режиме приема сигналы с выхода АП поступают на смеситель (СМ2),куда одновременно подается колебание от МГ. Сигналы промежуточной частоты с выхода СМ2 поступают на усилитель радиочастоты (У), настроенный на промежуточную частоту, и далее на согласованный фильтр, затем на КД, куда подается опорный сигнал с выхода СГ. Сигналы с выхода КД поступают на устройство черезпериодной компенсации (ЧПК) заданной кратности. После преобразования в однополярные сигналы с выхода ЧПК подаются на накопитель пачки импульсов (БН) и затем на видеоусилитель (ВУ), а из него на устройства обнаружения и измерения координат цели.

Для компенсации нестабильности линии задержки, используемой в ЧПК, необходима корректировка периода повторения излучаемых импульсов. Для этих целей служит блок синхронизации (БС), который, учитывая эту нестабильность, управляет формированием пачки зондирующих импульсов и блоком начальной установки (БНУ) через логическую схему (ЛС).

Проведем выбор элементной базы к данной структурной схеме:

В РЛС обнаружения с круговым обзором наибольшее распространение получили зеркальные антенны, состоящие из слабонаправленного излучастеля и зеркального отражателя. Отражатель выполняется в виде усеченного парабалоида, что позволяет получить диаграмму направленности вида косеканс квадрат.

В качестве усилителя мощности используется лампа бегущей волны (ЛБВ)

Приемник в РЛС строится по супергетеродинной схеме, которая позволяет получить более высокую чувствительность приемного тракта. Входным устройством приемника является полупроводниковый смеситель.

Местный гетеродин вследствии высоких требований к стабильности частоты выполняется на базе стабильного задающего генератора.

Согласованный фильтр для ФМ сигнала может быть реализован на основе ультразвуковых линий задержки (УЛЗ).

Формирователь ФМС описан при расчете параметров ФМ сигнала.

СПИСОК ЛИТЕРАТУРЫ

1. Методические указания к изучению темы «Принципы и физические основы построения радиолокационных и радионавигационных систем» по дисциплине «Основы теории радиотехнических систем» для студентов специальности 23.01 / Сост. М.Б.Свердлик. – Одесса: ОПИ, 1991. – 112 с.

2. Тексты лекций по дисциплине «Основы теории радиотехнических систем». Раздел «Обнаружение сигналов» для студентов специальности 23.01 / Сост. М.Б.Свердлик. – Одесса: ОПИ. 1992. – 87 с.

3. Методические указания по изучению темы «Статистическая оценка параметров и синтез измеретилей координат целей» для студентов специальности 23.01 / Сост. М.Б.Свердлик. – Одесса: ОПИ, 1990. – 53 с.

4. Тексты лекций по дисциплине «Основы теории радиотехнических систем». Раздел «Сложные сигналы» для студентов специальности 23.01 / Сост. М.Б.Свердлик. – Одесса: ОПУ. 1996. – 51 с.

5. Методические указания к курсовому проектированию по дисциплине «Основы теории радиотехнических систем» для студентов специальности 23.01 / Сост. М.Б.Свердлик, А.А.Кононов, В.Г.Макаренко. – Одесса: ОПИ, 1991. – 52 с.

6. Лезин Ю. С. «Введение в теорию и технику радиотехнических систем»: Учеб. пособие для вузов. –М.: Радио и связь, 1986. – 280 с., ил.

7. «Радиотехнические системы» / Под. ред. Ю.М.Казаринова. – М.: Высш. шк., 1990.



Приложение 2

Структурная схема согласованного фильтра для когерентной 12-импульсной пачки 15-позиционных ФМ сигналов.

А – согласованный фильтр для одного импульса

В – накопитель пачки импульсов

Приложение 3


Развернутая структурная схема РЛС

Развернутая схема согласованного фильтра (СФ) и блока накопления (БН) приведена в приложении 2. Развернутую же схему ЧПК, благодаря любезности преподавателя, магистрантам можно не приводить.


Снизить вероятность возникновения пожаров на данном объекте. ЗАКЛЮЧЕНИЕ С целью обеспечения безопасности движения речного транспорта в камере шлюза Усть-Каменогорской гидроэлектростанции в данном дипломном проекте была разработана радиолокационная станция обнаружения надводных целей, она гораздо эффективнее, чем, например система видео наблюдения. Были рассчитаны основные тактико- ...

Техническому совершенству, боевым и эксплуатационным качествам не уступали лучшим зарубежным образцам, а нередко и превосходили их. Большинство из созданных в эти годы образцов в большей или меньшей степени представляли собой высокоточное оружие. В них использовались высокоточные инерциальные системы, системы коррекции и телеуправления движением на траектории и системы самонаведения на конечном...




КНИ явления слепой скорости и неоднозначности по дальности, для устранения которых понадобилось изменить общепринятую схему построения приемника сопровождения по дальности, а также задействовать ЦВС для решения ряда задач. Важное техническое решение было найдено, при проектировании приемной системы, в использовании одних и тех же узлов и элементов системы синхронизации для работы РЛС в режиме ЛЧМ...

Параметры обнаружения. Поскольку принимаемая пачка из N импульсов является когерентной, то. 2. Расчет параметров помехопостановщика 2.1 Расчет мощности передатчика заградительной и прицельной помех помеха помехозащита радиолокационная станция Можно выделить несколько основных типов передатчиков заградительных помех: прямошумовые передатчики; передатчики помех, использующие мощный...

РЛС излучает электромагнитную энергию и обнаруживает эхосигналы приходящие от отраженных объектов а так же определяет их характеристики. Целью курсового проекта является рассмотреть РЛС кругового обзора и рассчитать тактические показатели этой РЛС: максимальную дальность с учетом поглощения; реальную разрешающую способность по дальности и азимуту; реальную точность измерения дальности и азимута. В теоретической части приведена функциональная схема импульсной активной РЛС воздушных целей для управления воздушным движением.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Радиолокационные системы (РЛС) предназначены для обнаружения и определения текущих координат (дальности, скорости, угла места и азимута) отраженных объектов.

РЛС излучает электромагнитную энергию и обнаруживает эхо-сигналы, приходящие от отраженных объектов, а так же определяет их характеристики.

Целью курсового проекта является рассмотреть РЛС кругового обзора и рассчитать тактические показатели этой РЛС: максимальную дальность с учетом поглощения; реальную разрешающую способность по дальности и азимуту; реальную точность измерения дальности и азимута.

В теоретической части приведена функциональная схема импульсной активной РЛС воздушных целей для управления воздушным движением. Также приведены параметры системы и формулы для ее расчета.

В расчетной части были определены следующие параметры: максимальная дальность с учетом поглощения, реальная разрешающая способность по дальности и азимуту, точность измерения дальности и азимута.


1. Теоретическая часть

1.1 Функциональная схема РЛС кругового обзора

Радиолокация – область радиотехники, обеспечивающая радиолокационное наблюдение различных объектов, то есть их обнаружение, измерение координат и параметров движения, а также выявление некоторых структурных или физических свойств путем использования отраженных или переизлученных объектами радиоволн либо их собственного радиоизлучения. Информация, получаемая в процессе радиолокационного наблюдения, называется радиолокационной. Радиотехнические устройства радиолокационного наблюдения называются радиолокационными станциями (РЛС) или радиолокаторами. Сами же объекты радиолокационного наблюдения именуются радиолокационными целями или просто целями. При использовании отраженных радиоволн радиолокационными целями являются любые неоднородности электрических параметров среды (диэлектрической и магнитной проницаемостей, проводимости), в которой распространяется первичная волна. Сюда относятся летательные аппараты (самолеты, вертолеты, метеорологические зонды и др.), гидрометеоры (дождь, снег, град, облака и т. д.), речные и морские суда, наземные объекты (строения, автомобили, самолеты в аэропортах и др.), всевозможные военные объекты и т. п. Особым видом радиолокационных целей являются астрономические объекты.

Источником радиолокационной информации является радиолокационный сигнал. В зависимости от способов его получения различают следующие виды радиолокационного наблюдения.

  1. Радиолокация с пассивным ответом, основанная на том, что излучаемые РЛС колебания – зондирующий сигнал – отражаются от цели и попадают в приемник РЛС в виде отраженного сигнала. Такой вид наблюдения иногда называют также активной радиолокацией с пассивным ответом.

Радиолокация с активным ответом, именуемая активной радиолокацией с активным ответом, характеризуется тем, что ответный сигнал является не отраженным, а переизлученным с помощью специального ответчика – ретранслятора. При этом заметно повышается дальность и контрастность радиолокационного наблюдения.

Пассивная радиолокация основана на приеме собственного радиоизлучения целей , преимущественно миллиметрового и сантиметрового диапазонов. Если зондирующий сигнал в двух предыдущих случаях может быть использован как опорный, что обеспечивает принципиальную возможность измерения дальность и скорости, то в данном случае такая возможность отсутствует.

Систему РЛС можно рассматривать как радиолокационный канал наподобие радиоканалов связи или телеметрии. Основными составными частями РЛС являются передатчик, приемник, антенное устройство, оконечное устройство.

Главные этапы радиолокационного наблюдения – это обнаружение, измерение, разрешение и распознавание.

Обнаружением называется процесс принятия решения о наличии целей с допустимой вероятностью ошибочного решения.

Измерение позволяет оценить координаты целей и параметры их движения с допустимыми погрешностями.

Разрешение заключается в выполнении задач обнаружения и измерения координат одной цели при наличии других, близко расположенных по дальности, скорости и т. д.

Распознавание дает возможность установить некоторые характерные признаки цели: точечная она или групповая, движущаяся или групповая и т. д.

Радиолокационная информация, поступающая от РЛС, транслируется по радиоканалу или по кабелю на пункт управления. Процесс слежения РЛС за отдельными целями автоматизирован и осуществляется с помощью ЭВМ.

Навигация самолетов по трассе обеспечивается посредством таких же РЛС, которые применяются в УВД. Они используются как для контроля выдерживания заданной трассы, так и для определения местоположения в процессе полета.

Для выполнения посадки и ее автоматизации наряду с радиомаячными системами широко используются РЛС посадки, обеспечивающие слежение за отклонением самолета от курса и глиссады планирования.

В гражданской авиации используют также ряд бортовых радиолокационных устройств. Сюда, прежде всего, относится бортовая РЛС для обнаружения опасных метеообразований и препятствий. Обычно она же служит для обзора земли с целью обеспечения возможности автономной навигации по характерным наземным радиолокационным ориентирам.

Радиолокационные системы (РЛС) предназначены для обнаружения и определения текущих координат (дальности, скорости, угла места и азимута) отраженных объектов. РЛС излучает электромагнитную энергию и обнаруживает эхо-сигналы, приходящие от отраженных объектов, а так же определяет их характеристики.

Рассмотрим работу импульсной активной РЛС обнаружения воздушных целей для управления воздушным движением (УВД), структура которого приведена на рисунке 1. Устройство управления обзором (управление антенной) служит для просмотра пространства (обычно кругового) лучом антенны, узким в горизонтальной плоскости и широким в вертикальной.

В рассматриваемой РЛС используется импульсный режим излучения, поэтому в момент окончания очередного зондирующего радиоимпульса единственная антенна переключается от передатчика к приемнику и используется для приема до начала генерации следующего зондирующего радиоимпульса, после чего антенна снова подключается к передатчику и так далее.

Эта операция выполняется переключателем прием-передача (ППП). Пусковые импульсы, задающие период повторения зондирующих сигналов и синхронизирующие работу всех подсистем РЛС, генерирует синхронизатор. Сигнал с приемника после аналого-цифрового преобразователя (АЦП) поступает на аппаратуру обработки информации – процессор сигналов, где выполняется первичная обработка информации, состоящая в обнаружении сигнала и изменении координат цели. Отметки целей и трассы траекторий формируются при первичной обработке информации в процессоре данных.

Сформированные сигналы вместе с информацией об угловом положении антенны передаются для дальнейшей обработки на командный пункт, а также для контроля на индикатор кругового обзора (ИКО). При автономной работе радиолокатора ИКО служит основным элементом для наблюдения воздушной обстановки. Такая РЛС, обычно ведет обработку информации в цифровой форме. Для этого предусмотрено устройство преобразования сигнала в цифровой код (АЦП).

Рисунок 1 Функциональная схема РЛС кругового обзора

1.2 Определения и основные параметры системы. Формулы для расчета

Основные тактические характеристики РЛС

Максимальная дальность действия

Максимальная дальность действия задается тактическими требованиями и зависит от многих технических характеристик РЛС, условий распространения радиоволн и характеристик целей, которые в реальных условиях использования станций подвержены случайным изменениям. Поэтому максимальная дальность действия является вероятностной характеристикой.

Уравнение дальности в свободном пространстве (т. е. без учета влияния земли и поглощения в атмосфере) для точечной цели устанавливает связь между всеми основными параметрами РЛС.

где E изл - энергия, излучаемая в одном импульсе ;

S а - эффективная площадь антенны ;

S эфо - эффективная отражающая площадь цели ;

 - длина волны ;

к р - коэффициент различимости (отношение энергий сигнал/шум на входе приемника, при котором обеспечивается прием сигналов с заданными вероятностью правильного обнаружения W по и вероятностью ложной тревоги W лт );

Е ш - энергия шумов, действующих при приёме .

Где Р и - и мпульсная мощность ;

 и , - длительность импульсов .

Где d аг - горизонтальный размер зеркала антенны ;

d ав - вертикальный размер зеркала антенны .

k р = k р.т. ,

где k р.т. - теоретический коэффициент различимости.

k р.т. =,

где q 0 - параметр обнаружения;

N - количество импульсов, принимаемых от цели.

где W лт - вероятность ложной тревоги;

W по - вероятность правильного обнаружения .

где t обл ,

F и - частота посылок импульсов ;

Q a0,5 - ширина диаграммы направленности антенны на уровне 0,5 по мощности

где - угловая скорость вращения антенны.

где Т обз - период обзора.

где k =1,38  10 -23 Дж/град - постоянная Больцмана;

k ш - коэффициент шума приемника;

T - температура приемника в градусах Кельвина (T =300К).

Максимальная дальность действия РЛС с учетом поглощения энергии радиоволн.

где  осл - коэффициент ослабления ;

 D - ширина ослабляющего слоя .

Минимальная дальность действия РЛС

Если антенная система не вносит ограничений, то минимальная дальность действия РЛС определяется длительностью импульса и временем восстановления антенного переключателя.

где с - скорость распространения электромагнитной волны в вакууме, c = 3∙10 8 ;

 и , - длительность импульсов ;

τ в - время восстановления антенного переключателя.

Разрешающая способность РЛС по дальности

Реальную разрешающую способность по дальности при использовании в качестве выходного устройства индикатора кругового обзора определим по формуле

 (D )=  (D ) пот +  (D ) инд ,

г де  (D ) пот - потенциальная разрешающая способность по дальности;

 (D ) инд - разрешающая способность индикатора по дальности.

Для сигнала в виде некогерентной пачки прямоугольных импульсов:

где с - скорость распространения электромагнитной волны в вакууме; c = 3∙10 8 ;

 и , - длительность импульсов ;

 (D ) инд - разрешающая способность индикатора по дальности вычисляется по формуле

г де D шк - предельное значение шкалы дальности;

k э = 0,4 - коэффициент использования экрана,

Q ф - качество фокусировки трубки.

Разрешающая способность РЛС по азимуту

Реальную разрешающую способность по азимуту определяется по формуле:

 ( аз ) =  ( аз ) пот +  ( аз ) инд ,

где  ( аз ) пот - потенциальная разрешающая способность по азимуту при аппроксимации диаграммы направленности гауссовой кривой;

 ( аз ) инд - разрешающая способность индикатора по азимуту

 ( аз ) пот =1,3  Q a 0,5 ,

 ( аз ) инд = d n M f ,

где d n - диаметр пятна электронно-лучевой трубки;

M f – масштаб шкалы.

где r - удаление отметки от центра экрана.

Точность определения координат по дальност и

Точность определения дальности зависит от точности измерения запаздывания отраженного сигнала, ошибок из-за неоптимальности обработки сигнала, от наличия неучтенных запаздываний сигнала в трактах передачи, приема и индикации, от случайных ошибок измерения дальности в индикаторных устройствах.

Точность характеризуется ошибкой измерения. Результирующая среднеквадратическая ошибка измерения дальности определяется по формуле:

где  (D ) пот - потенциальная ошибка измерения дальности.

 (D ) распр – ошибка из за непрямолинейности распространения;

 (D ) апп - аппаратурная ошибка.

где q 0 - удвоенное отношение сигнал/шум.

Точность определения координат по азимуту

Систематические ошибки при измерении азимута могут возникнуть при неточном ориентировании антенной системы РЛС и вследствие несоответствия между положением антенны и масштабной электрической шкалой азимута.

Случайные ошибки измерения азимута цели обуславливаются нестабильностью работы системы вращения антенны, нестабильностью схем формирования отметок азимута, а также ошибками считывания.

Результирующая среднеквадратическая ошибка измерения азимута определяется:

Исходные данные (вариант 5)

  1. Длина волны  , [см] …................................................................. ....... .... 6
  2. Импульсная мощность Р и , [кВт] ..................................................... ....... 600
  3. Длительность импульсов  и , [мкс] .................................................. ....... 2,2
  4. Частота посылок импульсов F и , [Гц] .................................................... 700
  5. Горизонтальный размер зеркала антенны d аг [м] ................................ 7
  6. Вертикальный размер зеркала антенны d ав , [м] ................................... 2,5
  7. Период обзора Т обз , [с] ..................................................................... ....... 25
  8. Коэффициент шума приёмника k ш ................................................. ....... 5
  9. Вероятность правильного обнаружения W по ............................. .......... 0,8
  10. Вероятность ложной тревоги W лт.. ................................................ ....... 10 -5
  11. Диаметр экрана индикатора кругового обзора d э , [мм] .................... 400
  12. Эффективная отражающая площадь цели S эфо , [м 2 ] …...................... 30
  13. Качество фокусировки Q ф ............................................................... ...... 400
  14. Предельное значение шкалы дальности D шк1 , [км] ........................... 50 D шк2 , [км] .......................... 400
  15. Измерительные метки дальности  D , [км] ......................................... 15
  16. Измерительные метки азимута  , [град] ..................................... ...... 4

2. Расчет тактических показателей РЛС кругового обзора

2.1 Расчет максимальной дальности действия с учётом поглощения

Сначала рассчитывается максимальная дальность действия РЛС без учёта ослабления энергии радиоволн при распространении. Расчет проводится по формуле:

(1)

Подсчитаем и установим величины, входящие в это выражение:

Е изл = Р и  и =600  10 3  2,2  10 -6 =1,32 [Дж]

S а = d аг d ав =  7  2,5=8,75 [м 2 ]

k р = k р.т.

k р.т. =

101,2

0,51 [град]

14,4 [град/с]

Подставляя полученные значения, будем иметь:

t обл = 0,036 [с], N = 25 импульсов и k р.т. = 2 ,02.

Пусть = 10, тогда k P =20.

Е ш - энергия шумов, действующих при приёме:

E ш =kk ш T =1,38  10 -23  5  300=2,07  10 -20 [Дж]

Подставляя все полученные значения в (1), находим 634,38 [км]

Теперь определим максимальную дальность действия РЛС с учетом поглощения энергии радиоволн:

(2)

Значение  осл находим по графикам. Для  =6 см  осл принимаем равным 0,01 дБ/км. Предположим, что ослабление происходит на всей дальности действия. При таком условии формула (2) принимает вид трансцендентного уравнения

(3)

Уравнение (3) решим графоаналитическим способом. Для  осл = 0,01 дБ/км и D макс = 634,38 км рассчитываем D макс.осл = 305,9 км.

Вывод: Из полученных расчетов видно, что максимальная дальность действия РЛС с учетом ослабления энергии радиоволн при распространении равна D макс.ос л = 305,9 [км].

2.2 Расчет реальной разрешающей способности по дальности и азимуту

Реальную разрешающую способность по дальности при использовании в качестве выходного устройства индикатора кругового обзора определим по формуле:

 (D) =  (D) пот +  (D) инд

Для сигнала в виде некогерентной пачки прямоугольных импульсов

0,33 [км]

для D шк1 =50 [км],  (D) инд1 =0,31 [км]

для D шк2 =400 [км],  (D) инд2 =2,50 [км]

Реальная разрешающая способность по дальности:

для D шк1 =50 км  (D ) 1 =  (D) пот +  (D) инд1 =0,33+0,31=0,64 [км]

для D шк2 =400 км  (D ) 2 =  (D) пот +  (D) инд2 =0,33+2,50=2,83 [км]

Реальную разрешающую способность по азимуту рассчитаем по формуле:

 ( аз ) =  ( аз ) пот +  ( аз ) инд

 ( аз ) пот =1,3  Q a 0,5 =0,663 [град]

 ( аз ) инд = d n M f

Принимая r = k э d э / 2 (отметка на краю экрана), получим

0,717 [град]

 ( аз )=0,663+0,717=1,38 [град]

Вывод: Реальная разрешающая способность по дальности равна:

для D шк1 = 0,64 [км], для D шк2 = 2,83 [км].

Реальная разрешающая способность по азимуту:

 ( аз )=1,38 [град].

2.3 Расчет реальной точности измерения дальности и азимута

Точность характеризуется ошибкой измерения. Результирующую среднеквадратическую ошибку измерения дальности рассчитаем по формуле:

40,86

 (D ) пот =[км]

Ошибкой из-за непрямолинейности распространения  (D ) распр пренебрегаем. Аппаратурные ошибки  (D ) апп сводятся к ошибкам отсчета по шкале индикатора  (D ) инд . Принимаем метод отсчета по электронным меткам (масштабным кольцам) на экране индикатора кругового обзора.

 (D ) инд = 0,1  D =1,5 [км] , где  D - цена деления шкалы.

 (D ) = = 5 [км]

Результирующую среднеквадратическую ошибку измерения азимута определим аналогично:

0,065

 ( аз ) инд =0,1   = 0,4

Вывод: Расчитав результирующую среднеквадратическую ошибку измерения дальности, получаем  (D )  ( аз ) =0,4 [град].

Заключение

В данной курсовой работе произведен расчет параметров импульсной активной РЛС (максимальная дальность с учетом поглощения, реальная разрешающая способность по дальности и азимуту, точность измерения дальности и азимута) обнаружения воздушных целей для управления воздушным движением.

В ходе расчетов были получены следующие данные:

1. Максимальная дальность действия РЛС с учетом ослабления энергии радиоволн при распространении равна D макс.осл = 305,9 [км];

2. Реальная разрешающая способность по дальности равна:

для D шк1 = 0,64 [км];

для D шк2 = 2,83 [км].

Реальная разрешающая способность по азимуту:  ( аз )=1,38 [град].

3. Результирующая среднеквадратическая ошибка измерения дальности получаем  (D ) =1,5 [км]. Среднеквадратическая ошибка измерения азимута  ( аз ) =0,4 [град].

К достоинствам импульсных РЛС следует отнести простоту измерения расстояний до целей и их разрешения по дальности, особенно при наличии многих целей в зоне обзора, а также практически полную временную развязку между принимаемыми и излучаемыми колебаниями. Последнее обстоятельство позволяет применять одну и ту же антенну, как для передачи, так и для приема.

Недостатком импульсных РЛС является необходимость использования большой пиковой мощности излучаемых колебаний, а так же невозможность измерения малых дальностей – большая мертвая зона.

РЛС применяются для решения широкого круга задач: от обеспечения мягкой посадки космических аппаратов на поверхность планет до измерения скорости движения человека, от управления средствами поражения в системах противоракетной и противосамолетной обороны до индивидуальной защиты.

Список литературы

  1. Васин В.В. Дальность действия радиотехнических измерительных систем. Методическая разработка. - М.:МИЭМ 1977г.
  2. Васин В.В. Разрешающая способность и точность измерений в радиотехнических измерительных системах. Методическая разработка. - М.: МИЭМ 1977г.
  3. Васин В.В. Методы измерения координат и радиальной скорости объектов в радиотехнических измерительных системах. Конспект лекций. - М.: МИЭМ 1975г.

4. Бакулев П.А. Радиолокационные системы. Учебник для ВУЗов. – М.: «Радио-

Техника» 2004г.

5. Радиотехнические системы : Учебник для вузов / Ю. М. Казаринов [и др.]; Под ред. Ю. М. Казаринова. — М.: Академия, 2008. — 590 с.:

Другие похожие работы, которые могут вас заинтересовать.вшм>

1029. Рзработка программного обеспечения лабораторного комплекса компьютерной обучающей системы(КОС) «Экспертные системы» 4.25 MB
Область ИИ имеет более чем сорокалетнюю историю развития. С самого начала в ней рассматривался ряд весьма сложных задач, которые, наряду с другими, и до сих пор являются предметом исследований: автоматические доказательства теорем...
3242. Разработка системы цифровой коррекции динамических характеристик первичного преобразователя измерительной системы 306.75 KB
Обработка сигналов во временной области широко используется в современной электронной осциллографии и в цифровых осциллографах. А для представления сигналов в частной области используются цифровые анализаторы спектра. Для изучения математических аспектов обработки сигналов используются пакеты расширения
13757. Создание сетевой системы тестирования электронного сопровождения курса Операционные системы (на примере инструментальной оболочки Joomla) 1.83 MB
Программа для составления тестов позволит работать с вопросами в электронном виде использовать все виды цифровой информации для отображения содержания вопроса. Целью курсовой работы является создание современной модели webсервиса тестирования знаний с помощью средств webразработки и программная реализация для эффективной работы тестовой системы – защита от копирования информации и списывания при контроле знаний т. Последние два означают создание равных для всех условий прохождения контроля знаний невозможность списывания и...
523. Функциональные системы организма. Работа нервной системы 4.53 KB
Функциональные системы организма. Работа нервной системы Помимо анализаторов то есть сенсорных систем в организме функционируют другие системы. Эти системы могут быть отчетливо оформлены морфологически то есть иметь четкую структуру. К таким системам относятся например системы кровообращения дыхания или пищеварения.
6243. 44.47 KB
Системы класса CSRP Customer Synchronized Resource Plnning. Системы CRM Customer Reltionships Mngement управление отношениями с клиентами. Системы класса ЕАМ. Несмотря на то что передовые предприятия для укрепления на рынке внедряют мощнейшие системы класса ERP этого уже оказывается недостаточно для повышения доходов предприятия.
3754. Системы счисления 21.73 KB
Число - основное понятие математики, которое обычно означает либо количество, размер, вес и тому подобное, либо порядковый номер, расположение в последовательности, код, шифр и тому подобное.
4228. Социальные системы 11.38 KB
Парсонс визначає як складову більш загальної системи дії. Іншими складовими загальної системи дії є система культури система особистості та система поведінкового організму. Розмежування між чотирма виокремленими підсистемами дії можна провести за характерними для них функціями. Щоб система дії могла існувати вона має бути здатна до адаптації досягнення мети інтеграції і збереження взірця тобто має задовольняти чотирьом функціональним вимогам.
9218. КУРСОВЫЕ СИСТЕМЫ ЛА 592.07 KB
Комплексный метод определения курса. Для определения курса самолётов была создана самая многочисленная группа курсовых приборов и систем основанных на различных физических принципах работы. Поэтому при измерении курса возникают погрешности обусловленные вращением Земли и перемещением летательного аппарата относительно Земли. Для уменьшения погрешностей в показаниях курса производится коррекция кажущегося ухода гирополукомпаса и коррекция горизонтального положения оси ротора гироскопа.
5055. Политические системы 38.09 KB
Функции модернизации политической систем. Рассматривая политику как сферу взаимодействия человека и государства можно выделить два варианта построения этих связей постоянно но отнюдь не равномерно распространяющихся в истории политической жизни.
8063. Мультибазовые системы 7.39 KB
Мультибазовые системы позволяют конечным пользователям разных узлов получать доступ и совместно использовать данные без необходимости физической интеграции существующих баз данных. Они обеспечивают пользователям возможность управлять базами данных их собственных узлов без централизованного контроля который характерен для обычных типов распределенных СУБД. Администратор локальной базы данных может разрешить доступ к определенной части своей базы данных посредством создания схемы экспорта.

Литература:

1. Дружинин В.В. Справочник по основам радиолокационной техники. Стр. 344-352, 353-367, 368-375.

2. Карпекин В.Е. Радиолокационная станция обнаружения воздушных объектов. Стр. 30-47.

3. Карпекин В.Е., Рябцев И.Ф., Тюнин Н.Г., Хмель Н.Н. Проверка коэффициента шума приёмных систем. Стр. 3-26.

Вопросы:

1. Технические характеристики приёмных устройств РЛС.

2. Структурная схема приёмного устройства РЛС.

1. Технические характеристики приёмных устройств РЛС.

Приемная система радиолокационной станции обнаружения решает следующие основные задачи:

Выделение сигналов, отраженных от воздушных объектов, из множества других сигналов (частотная селекция);

Усиление отраженных сигналов и их преобразование по частоте;

Детектирование высокочастотных сигналов и преобразование их к виду, удобному для отображения на экране индикаторного устройства;

Обработка сигналов с целью подавления помех.

Качество выполнения приемной системой данных задач определяется ее характеристиками.

К основным из них относятся следующие:

Чувствительность приемника;

Коэффициент шума;

Динамический диапазон;

Коэффициент усиления;

Полоса пропускания;

Диапазон рабочих частот;

Помехоустойчивость.

Чувствительность приемника характеризует его способность выполнять свои функции при слабых входных сигналах. Она оценивается минимальной величиной сигнала на входе приемника, которая необходима для получения достаточной мощности на его выходе при заданном превышении над собственными шумами приемника. Количественно определяется величинами предельной и реальной чувствительности.

Предельной чувствительностью приемника P ’ п p . min называют такую минимальную мощность сигнала на входе приемника, которая обеспечивает на выходе его линейной части (входе детектора) отношение по мощности сигнала к шуму, равное единице.

Реальной чувствительностью приемника P п p . min называют такую мощность сигнала на его входе, которая обеспечивает на выходе линейной части приемника отношение сигнал/шум, равное коэффициенту различимости q .

Реальная и предельная чувствительность связаны зависимостью:

P пp.min = P ’ п p.min *q.

Коэффициент различимости численно равен минимально допустимому отношению сигнал/шум на выходе линейной части приемника, при котором сигнал на выходе приемника может быть уверенно обнаружен.

Чувствительность приемника тем выше, чем меньше величина P п p . min . В современных приемниках РЛС P п p . min = 10 -13 – 10 -14 Вт.

Чувствительность приемника РЛС ограничивается его собственными шумами. Они возникают в антенно-волноводном тракте, сопротивлениях, электронных лампах и полупроводниковых приборах.

Причинами шумов являются беспорядочное тепловое движение электронов и проводниках, неравномерное излучение электронов катодами в электронных лампах и т.д. С увеличением температуры уровень собственных шумов возрастает. Интенсивность шумов весьма мала. Однако проходя через приемник с большим усилением, они создают на его выходе напряжение, способное привести в действие оконечное устройство. На экране индикатора они наблюдаются в виде шумовой дорожки.

Количественная оценка шумов линейной части приемника осуществляется с помощью коэффициента шума. Коэффициентом шума приемника N называют величину, показывающую, во сколько раз отношение сигнал/шум на входе приемника больше отношения сигнал/шум на выходе его линейной части, т.е.

Для идеального приемника, у которою собственные шумы отсутствуют, коэффициент шума ранен единице. Реальные приемники имеют коэффициент шума от 2 до 10. Выполнение требования высокой чувствительности приемника достигается применением малошумящих усилителей высокой частоты и всемерным снижением потерь в антенно-волноводном тракте.

Наряду с высокой чувствительностью приемник должен иметь большой динамический диапазон. Это связано с наличием на его входе помех и большого разброса амплитуд полезных сигналов. Динамическим диапазоном приемника называется величина наибольшего перепада входных сигналов, в пределах которого он еще обеспечивает нормальную работу. Количественно динамический диапазон оценивается отношением максимального входного сигнала, обработка которого приемником производится еще с допустимыми искажениями, к чувствительности приемника, выраженном в децибелах:

Д=10 lg (Р пр. max пр. min)

Динамический диапазон приемных систем современных РЛС должен быть не менее 70 - 80 Дб. Его расширение достигается за счет повышения чувствительности приемника, применения схем регулирования усиления и использования специальных усилительных приборов.

Усилительные свойства приемника характеризуются коэффициентом усиления. Различают коэффициент усиления по мощности К р и коэффициент усиления по напряжению К U .

Коэффициент усиления по мощности - это отношение мощности сигнала на выходе приемника Рвых. к мощности на его входе Р вх .:

К р =Р вых /Р вх

Коэффициент усиления по напряжению определяется аналогично:

К U =U вых / U вх

Коэффициент усиления определяется в относительных единицах или децибелах, причем

К дб =20 lg К

К рдб =10 lg К р

В современных приемниках общее усиление может достигать

К р = (0,1-10)*10 13 или соответственно К р = 120 - 140 д6.

Зависимость модуля коэффициента усиления от частоты называют амплитудно-частотной характеристикой (рис.3.70).

Рис. 3.70. Амплитудно-частотная характеристика приемника.

Амплитудно-частотная характеристика приемника определяет его частотную избирательность, т.е. способность выделять полезный сигнал из совокупности колебаний с различными несущими частотами. Количественно частотная избирательность приемника характеризуется его полосой пропускания Df . Полоса пропускания определяется как разность частот f2 и f1 , для которых К уменьшается в , а К р - в два раза от своего максимального значения. Избирательность приемника тем выше, чем ближе форма его амплитудно-частотной характеристики к П-образной.

Предельная чувствительность, полоса пропускания и коэффициент шума связаны зависимостью:

Р’ пр. min = к*Т о *N*Df,

где: Р’ пр. min - в Вт,

к - постоянная Больцмана,

Т о = 300°К, к*Т о = 4*10 -21 Вт/с,

Df - полоса пропускания (Мгц),

N - коэффициент шума.

Диапазон рабочих частот определяется значением крайних частот, обрабатываемых приемником. Он определяется следующими требованиями:

Приемник должен допускать настройку на любую частоту диапазона;

Характеристики приемника в этом диапазоне должны изменяться в заданных пределах.

Зачастую диапазон рабочих частот называют по длине волн, обрабатываемых приемником. В диапазоне СВЧ, например, различают приемники сантиметрового, дециметрового и метрового диапазонов.

Помехоустойчивостью приемника называют его способность обеспечивать достоверное выделение полезного сигнала при действии различного рода помех.

Вывод: Качество выполнения приемной системой задач в составе РЛС определяется её техническими характеристиками, основными из которых являются: чувствительность, коэффициент шума, динамический диапазон, коэффициент усиления, полоса пропускания, диапазон рабочих частот, помехоустойчивость.

2. Структурная схема приёмного устройства РЛС.

Приемная система радиолокационной станции обнаружения воздушных объектов выполняется, как правило, по схеме супергетеродинного приемника с однократным преобразованием частоты. Структурная схема супергетеродинного приемника приведена на рисунке 3.71.

Рис. 3.71. Структурная схема супергетеродинного приемника.

Слабый сигнал электромагнитной энергии, принятый антенно-волноводной системой, поступает на вход усилителя высокой частоты (УВЧ). Далее усиленный по мощности сигнал подается на высокочастотный фильтр.

Высокочастотный фильтр представляет собой колебательный контур с распределенными емкостью и индуктивностью. Его резонансная частота соответствует частоте принимаемого сигнала. Фильтр предназначен для частотной селекции полезных сигналов, а также для подавления помех по зеркальному каналу.

Основное усиление в супергетеродинном приемнике осуществляется не на частоте принимаемого сигнала, а на промежуточной частоте, более низкой по сравнению с принимаемой (в сотни раз). Перенос радиолокационной информации на промежуточную частоту осуществляет преобразователь частоты. Он состоит из смесителя, маломощного генератора незатухающих колебаний (стабильного гетеродина) и фильтра промежуточной частоты (входной фильтр усилителя промежуточной частоты).

Частота колебаний стабильного гетеродина fcг отличается от несущей частоты сигнала fc на величину промежуточной частоты fпч , т.е. fпч = fcг - fc или fпч = fc - fcг.

На смеситель одновременно воздействуют два напряжения: напряжение преобразуемого сигнала на высокой несущей частоте fc и напряжение стабильного гетеродина, изменяющееся по гармоническому закону с частотой fcг .

Для того чтобы получить колебание, имеющее ту же форму, что и поступающий сигнал, необходимо выделить колебание только одной комбинационной частоты. На входном фильтре усилителя промежуточной частоты (УПЧ) выделяют сигнал разностной частоты fпч = fcг - fc или fпч = fc - fcг .

УПЧ обеспечивает основное усиление и определяет полосу пропускания приемника.

В супергетеродинном приемнике при настройке на другую частоту одновременно изменяется настройка высокочастотного фильтра и стабильного гетеродина таким образом, что промежуточная частота остается неизменной. Это позволяет иметь в приемнике многокаскадный усилитель промежуточной частоты с постоянной настройкой.

Детектор преобразует модулированное высокочастотное колебание в напряжение, соответствующее модулирующему сигналу передающей системы. Например, при воздействии на его вход радиоимпульса промежуточной частоты на выходе детектора формируется видеоимпульс.

После детектора сигнал дополнительно усиливается усилителем низкой частоты (видеоусилителем) до величины, необходимой для нормальной работы индикаторного устройства.

Конструктивно вместе с усилителем низкой частоты (УНЧ) выполняются и схемы защиты РЛС от помех.

Особый интерес представляют детекторы. В детекторе осуществляется выделение сообщения из сигнала и устранение несущего высокочастотного колебания, являющегося переносчиком сообщения. В соответствии с видом модуляции различают детектирование сигналов, модулированных по амплитуде, фазе или частоте. Эти функции выполняют соответственно амплитудные, фазовые и частотные детекторы.

Спектр выходного колебания детектора лежит в области низких частот (частот модуляции), а спектр входного - в области высоких частот (центральной частоты сигнала). Такая трансформация спектра возможна только в устройствах, имеющих нелинейные или параметрические элементы. Роль таких элементов в современных детекторах выполняют обычно полупроводниковые диоды, реже транзисторы - биполярные и полевые. Выделение области частот модуляции и устранение высокочастотных составляющих спектра осуществляется фильтрами нижних частот (RС - или RLC - фильтрами).

Основным видом детектора является амплитудный детектор. Он имеет самостоятельное значение как детектор АМ-сигналов и, кроме того, входит в состав фазовых и частотных детекторов.



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама