THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Введение

Электропривод представляет собой электромеханическую систему, предназначенную для преобразования электрической энергии в механическую, приводящую в движение рабочие органы различных машин. Однако на современном этапе на электропривод часто возлагается задача управления движением рабочих органов по заданному закону, с заданной скоростью или по заданной траектории, поэтому более точно можно сказать, чтоэлектропривод - это электромеханическое устройство, предназначенное для приведения в движение рабочих органов различных машин и управления этим движением.

Как правило, электропривод состоит из электродвигателя , осуществляющего непосредственное преобразование электрической энергии в механическую, механической части , передающей энергию от двигателя к рабочему органу, включающий рабочий орган и устройства управления двигателем , осуществляющего регулирование потока энергии от первичного источника к двигателю. В качестве устройства управления может быть использован как простейший выключатель или контактор, так и регулируемый преобразователь напряжения. В совокупности перечисленные устройства образуют энергетический канал привода. Для обеспечения заданных параметров движения привода предназначен информационно-управляющий канал , в состав которого входят информационные и управляющие устройства, обеспечивающие получение информации о заданных параметрах движения и выходных координатах и реализующие определенные алгоритмы управления. К ним относятся, в частности, различные датчики (угла, скорости, тока, напряжения и др.), цифровые, импульсные и аналоговые регуляторы.

1. Исходные данные для расчета

Кинематическая схема электропривода рольганга перед ножницами для пореза прокатанного металла на заготовки показана на рис. 1.1. Предусматривается безупорный способ пореза.

Электропривод рольганга перед ножницами для пореза прокатанного металла.

1 - электродвигатель,

2 - тормозной шкив,

3 - редуктор,

4 - продольный вал,

5 - коническая пара,

7 - подкат,

8 - отрезаемая заготовка,

9 - ось ножниц

Масса подката на рольганге m п =5,5 кг·10 3

Масса ролика m р =1,0 кг·10 3

Мерная длина отрезаемых заготовок l =5,7 м

Диаметр ролика D Р =0,4 м

Число роликов n =15

Диаметр цапф d Ц =0,15 м

Максимальная скорость движения подката х мах =1,4 м/с

Минимальная (ползучая) скорость движения х м in =0,42 м/с

Время работы на ползучей скорости t min =0,7 с

Допустимое ускорение а =2,1 м/с 2

Момент инерции ролика J Р =20 кг·м 2

Момент инерции колеса качения J К =1,0 кг·м 2

Момент инерции продольного вала J В =5,0 кг·м 2

Расстояние между роликами l Р =0,8 м

Длительность цикла t Ц =42,5 с

КПД конической передачи з МЕХ =0,92

2. Предварительный выбор двигателя

Момент на продольном валу привода рольганга определяется моментом трения скольжения в цапфах роликов и моментом трения качения роликов по подкату.

где м =0,1 - коэффициент трения скольжения в цапфах;

f =1,5·10 -3 - коэффициент трения качения роликов по подкату, м.

Рассчитывается значение мощности двигателя

Пользуясь справочником Вешеневского С.Н., выбираем четыре двигателя большей мощности. Два двигателя постоянного тока параллельного возбуждения, два асинхронных двигателя с фазным ротором. Данные двигателей заносим в таблицу 2.1.

Таблица 2.1

Р , кВт

n , об/мин

J , кг м 2

i 2

J i 2

где i - передаточное число, определяется по формуле:

Для дальнейшего расчета используем двигатель с наименьшим числом J i 2 . В данном случае это асинхронный двигатель марки МТВ 312-6.

Выписываем его данные из справочника.

3. Построение тахограммы и нагрузочной диаграммы

Согласно циклу работы электропривода рольганга строим тахограмму (рис. 3.1)

Технологический процесс осуществляется в следующей последовательности. Подкат (прокатанный из слитка металл) подается цепным транспортером (шлеппером) на рольганг. Привод запускается и перемещает подкат в направлении к ножницам. Передний конец подката проходит ось ножниц до оси безупорного останова. При этом привод вначале затормаживается до минимальной скорости v min , а через заданное время t min останавливается. Осуществляется рез заготовки. Отрезанная заготовка снимается. Снова осуществляется пуск рольганга, процесс продолжается, пока вся длина подката не будет порезана на мерные заготовки.

Рис. 3.1. Тахограмма работы электропривода рольганга

Отрезки времени на участках тахограмм рассчитываются по известным из физики формулам равномерного и равноускоренного движения.

Для построения нагрузочной характеристики необходимо рассчитать динамические и статические моменты конкретных производственных механизмов по формулам:

Рассчитываем результирующие моменты на каждом участке по формуле:

По полученным расчетам строим нагрузочную характеристику (рис. 3.2).

4. Проверка двигателя по нагреву и на перегрузочную способность

электропривод двигатель тахограмма

Для проверки двигателя по нагреву применяется метод эквивалентных величин, предполагающий простой расчет среднеквадратичных значений мощности, момента, тока.

Для асинхронных электродвигателей с фазным ротором М=С" м ФI 2 cos ц 2 (здесь ц 2 - угол сдвига между вектором магнитного потока Ф и вектором тока ротора I 2 ). Коэффициент мощности cosц 2 ?const , а меняется в зависимости от загрузки электродвигателя. При нагрузке, близкой к номинальной, Ф·cos ц 2 приближенно может быть принято постоянным и, следовательно, М? К" м I 2 . Учитывая пропорциональность момента и тока, условием для проверки двигателя по нагреву можно принять:

Значит двигатель проходит проверку по нагреву

Проверяется также двигатель по перегрузочной способности, исходя из нагрузочной диаграммы.

где - максимальный нагрузочный момент (определяется по нагрузочной диаграмме), Н?м;

Максимальный момент двигателя, Н?м.

По справочным данным для двигателя МТВ 312-6

147,04<448, значит, двигатель проходит проверку на перегрузочную способность.

5. Расчет статических механических характеристик электропривода

Механическая характеристика АД выражается формулой Клосса.

М кг >М кд,

где М кг, М кд - критические моменты в генераторном и двигательном режимах соответственно.

Если пренебречь реактивным сопротивлением статора получим, упрощенную формулу Клосса:

где - критическое скольжение АД.

Номинальное скольжение АД определяется по формуле:

Синхронная частота вращения магнитного поля АД:

Номинальная скорость определяется

Номинальный вращающий момент АД определяется по формуле (4.2)

Критический момент АД определяется по формуле (4.4)

Для построения механической характеристики рассчитываем момент по формуле (5.2) и угловую скорость по формуле:

Полученные данные заносим в таблицу 5.1 и строи механическую характеристику (рис 5.1).

Таблица 5.1

M , Н?м

, рад/с

M , Н?м

, рад/с

Механическая характеристика асинхронного двигателя марки МТВ 312-6

6. Расчет переходных процессов и динамических характеристик

Если в процессе пуска двигателя момент статического сопротивления постоянен, что в практике эксплуатации имеет место во многих случаях, то пики тока и момента обычно выбирают одинаковыми на всех ступенях.

Для расчета сопротивлений надо задаться двумя из трех следующих величин: М 1 (пиковым моментом), М 2 (моментом переключения), (числом пусковых ступеней). При выборе величин М 1 , М 2 , z следует руководствоваться следующими соображениями.

В случае релейно-контакторного управления число пусковых ступеней всегда значительно меньше, чем у реостатов, т.к. здесь режим пуска регламентируется аппаратурой управления и не зависит от оператора. К тому же каждая пусковая ступень требует отдельного контактора и реле, что заметно увеличивает стоимость оборудования. Поэтому число пусковых ступеней при контакторном управлении для двигателей малой мощности - до 10 кВт - делается равным 1 - 2; для двигателей средней мощности - до 50 кВт - 20 - 3; для двигателей большей мощности - 3 - 4 ступени.

Для асинхронного двигателя марки МТВ 312-6 примем число ступеней z =3.

Аналитический метод

Момент переключения находится по формуле:

В данном курсовом проекте следует принять

Полное сопротивление ротора на первой ступени:

Сопротивления следующих ступеней:

Сопротивления секций:

По полученным данным строим характеристику (рис. 6.1).

Графический метод

Масштаб сопротивлений

Приведенное сопротивление ротора вычисляется по формуле

Пусковая характеристика асинхронного двигателя марки МТВ 312-6

Величина Т М называется механической постоянной времени. Она характеризует скорость протекания переходного процесса. Чем больше Т М , тем медленнее протекает переходной процесс.

В пределах прямолинейной части характеристики АД для механической постоянной времени при справедливо выражение:

В данном курсовом проекте удобнее будет воспользоваться выражением для механической постоянной времени для прямолинейных характеристик:

Время работы на каждой пусковой характеристике можно определить

Уравнение для каждой ступени движения электропривода:

По формулам (6.11) и (6.12) рассчитываем зависимости и для каждой ступени. Расчеты сводятся в таблицу 6.2 и по ним строятся графики переходных процессов (рис. 6.1 и рис. 6.2.).

По построенной пусковой характеристике (рис. 6.1) определяем значения, и заносим их в таблицу 6.1.

Таблица 6.1

1 ступень

2 ступень

3 ступень

естественная

Рассчитываем зависимости и для каждой ступени

Для остальных ступеней расчет ведется аналогично. Полученные данные заносим в таблицу 6.2.

Таблица 6.2

1 ступень

2 ступень

3 ступень

t от нач , с

естественная

t от нач , с

График переходного процесса. M (t )

График переходного процесса. (t )

7. Расчет искусственных механических характеристик

Механическая характеристика АД выражается упрощенной формулой Клосса:

Введение добавочного сопротивления в цепь ротора двигателя

Для расчета естественной характеристики определяем номинальные сопротивления ротора

Относительное сопротивление цепи ротора с включенным резистором

Определяем отношение

Скольжение на искусственной характеристике определяется:

Строим механические характеристики M=f(s и) (рис. 7.1) для моментов, посчитанных на естественной характеристике, находя новые значения s и.

Уменьшение напряжения, подводимого к статору двигателя

Электромагнитный вращающий момент асинхронной машины пропорционален квадрату напряжения статора:

где m 1 - число фаз статора;

U 1ф - фазное напряжение статора, В;

R 2 - приведенное активное сопротивление всей цепи ротора, Ом;

х 2 - приведенное реактивное сопротивление ротора, Ом;

R 1 , x 1 - активное и реактивное сопротивления статора, Ом.

Следовательно, будет справедливо следующее соотношение:

В данном курсовом проекте требуется построить механические характеристики АД (рис. 7.2) при напряжении статора и. Для этого необходимо пересчитать моменты двигателя на каждой характеристике при неизменных значениях скольжения:

Изменение частоты тока статора

В данном курсовом проекте требуется построить механические характеристики АД для частоты f 1 =25 Гц и f 2 =75 Гц. Для того, чтобы, должно соблюдаться условие: , определяем сначала значение скорости идеального холостого хода для нового значения частоты:

Определяем значение критическое скольжение для нового значения частоты:

где - значение частоты в относительных единицах (для f 1 =25 Гц; а для f 1 =75 Гц).

Т.к. критический момент остается постоянным, номинальный момент также не изменяется, следовательно, и перегрузочная способность двигателя остается прежней. Рассчитать номинальное скольжение двигателя можно, выразив его из уравнения:

8. Разработка принципиальной электрической схемы электропривода

Пуск двигателя с фазным ротором осуществляется с введенными резисторами в цепи ротора. Резисторы в цепи ротора служат для ограничения токов не только в процессе пуска, но и при реверсе, торможении, а также при снижении скорости.

По мере разгона двигателя для поддержания ускорения привода резисторы выводятся. Когда пуск закончится, резисторы полностью шунтируются, и двигатель перейдет работать на естественную механическую характеристику.

На рис. 8.1 приведена схема асинхронного двигателя с фазным ротором, где с помощью релейно-контакторной аппаратуры осуществляется пуск двигателя в две ступени, причем напряжение подается одновременно на силовые цепи и цепи управления с помощью выключателя QF.

Управление двигателем осуществляется в функции времени. При подаче напряжения в цепь управления реле времени КТ1, КТ2, KT3 срабатывают и размыкают свои контакты. Далее нажимается кнопка SBС1 «Пуск». Это приводит к срабатыванию контактора КМ1 и пуску двигателя с резисторами, введенными в цепи ротора, так как контакторы КМ3, КМ4, КМ5 питания не получают. При включении контактора КМ1 реле КТ1 теряет питание и замыкает свой контакт в цепи контактора КМ3 через промежуток времени, равный выдержке времени реле КТ1. По истечении указанного времени включается контактор КМ3, шунтирующий первую пусковую ступень резисторов. Одновременно размыкается контакт КМ3 в цепи реле КТ2. Реле КТ2 теряет питание и с выдержкой времени замыкает свой контакт в цепи контактора КМ4, который срабатывает через промежуток, равный выдержке времени реле КТ2, и шунтирует вторую ступень резисторов в цепи ротора. Одновременно размыкается контакт КМ4 в цепи реле КТ3. Реле КТ3 теряет питание и с выдержкой времени замыкает свой контакт в цепи контактора КМ5, который срабатывает через промежуток, равный выдержке времени реле КТ3, и шунтирует вторую ступень резисторов в цепи ротора.

Динамическое торможение осуществляется отключением двигателя от сети трехфазного тока и подсоединением обмотки статора к сети постоянного тока. Магнитный поток в обмотках статора, взаимодействуя с током ротора, создает тормозной момент.

Для остановки двигателя нажимается кнопка SBТ «Стоп». Контактор КМ1 обесточивается, размыкая свои контакты в силовой цепи двигателя.

Одновременно с этим замыкается контакт КМ1 в цепи контактора КМ6, вследствие чего контактор КМ6 срабатывает и замыкает свои силовые контакты в цепи постоянного тока. Обмотка статора двигателя отключается от трехфазной сети и подключается к сети постоянного тока. Двигатель переходит в режим динамического торможения. В схеме применено реле времени с выдержкой времени при размыкании.

При скорости, близкой к нулю, контакт КТ размыкается, вследствие чего контактор КМ6 обесточивается и двигатель отключается от сети.

Интенсивность торможения регулируется с помощью резистора R. В схеме применена блокировка с помощью размыкающих контактов КМ1 и КМ6 для невозможности включения статора двигателя одновременно в сеть постоянного и трехфазного тока.

Заключение

В данном курсовом проекте мы осуществили: предварительный выбор двигателя; осуществили построение тахограммы и нагрузочной диаграммы; выполнили проверку двигателя по нагреву и на перегрузочную способность; произвели расчет статических механических характеристик электропривода, переходных процессов и динамических характеристик, искусственных механических характеристик; а так же произвели разработку принципиальной электрической схемы электропривода.

При использовании регулируемого электропривода экономия электроэнергии достигается за счет следующих мероприятий:

Снижение потерь в трубопроводах;

Снижение потерь на дросселирование в регулирующих устройствах;

Поддержание оптимального гидравлического режима в сетях;

Устранение влияния холостого хода электродвигателя.

Список использованных источников

1. Вешеневский С.Н. Характеристики двигателей в электроприводе. - М.: Энергия, 1977. - 472 с.

2. Чиликин М.Г. «Общий курс электропривода». - М.: Энергия 1981 г.

3. Крановое электрооборудование: Справочник/ Ю.В. Алексеев,

А.П. Богословский. - М.: Энергия, 1979 г.

Подобные документы

    Описание металлической заготовки детали, выбор станка. Расчет и построение нагрузочной диаграммы главного электропривода. Проверка электродвигателя главного электропривода по нагреву. Построение нагрузочной диаграммы и тахограммы привода подачи.

    курсовая работа , добавлен 12.04.2015

    Режимы работы крановых механизмов. Выбор типа электропривода, двигателя и силового преобразователя. Общие сведения о применениях различных электроприводов, расчет тахограммы и нагрузочной диаграммы. Проверка выбранного двигателя по нагреву и перегрузке.

    дипломная работа , добавлен 08.03.2015

    Определение времени цикла, пуска и остановки электродвигателя. Построение нагрузочной диаграммы механизма. Проверка выбранного двигателя по нагреву, на нагрузочную способность. Выбор преобразователя частоты и его обоснование. Механическая характеристика.

    курсовая работа , добавлен 25.12.2011

    Выбор двигателя и редуктора. Резание на токарно-отрезных станках. Работа двигателя при торцевой подрезке. Расчет статических и динамических усилий в механизме и построение упрощенной нагрузочной диаграммы. Расчет потребной мощности и выбор двигателя.

    контрольная работа , добавлен 25.01.2012

    Описание конструкции пассажирского лифта и технологического процесса его работы. Проектирование электропривода: выбор рода тока и типа электропривода; расчет мощности двигателя; определение момента к валу двигателя; проверка по нагреву и перегрузке.

    курсовая работа , добавлен 16.11.2010

    Разработка разомкнутой системы электропривода рабочего механизма (подъем стрелы карьерного гусеничного экскаватора). Выбор двигателя и определение каталожных данных. Расчет сопротивлений реостатов и режимов торможения. Проверка двигателя по нагреву.

    курсовая работа , добавлен 13.08.2014

    Выбор типа электропривода и электродвигателя. Расчет нагрузочной диаграммы электродвигателя. Проверка двигателя по нагреву. Принципиальная электрическая схема силовой части. Переход к системе относительных единиц. Передаточная функция регулятора тока.

    курсовая работа , добавлен 27.10.2008

    Механические буровые установки глубокого бурения. Выбор двигателя, построение уточненной нагрузочной диаграммы. Расчет переходных процессов в разомкнутой системе, динамических показателей электропривода и возможности демпфирования упругих колебаний.

    дипломная работа , добавлен 30.06.2012

    Предварительный расчет мощности электродвигателя, определение передаточного числа редуктора. Построение тахограммы и нагрузочных диаграмм, проверка двигателя по перегрузочной способности и мощности. Расчет и построение механических характеристик привода.

    курсовая работа , добавлен 24.09.2010

    Предварительный выбор мощности и типа электродвигателя. Расчет и построение статических естественных механических характеристик электродвигатели для различных режимов его работы. Выбор электрической схемы электропривода и ее элементов, проверка двигателя.

Выбор электродвигателя и элементов системы управления автоматизированного привода, обеспечивающего при заданной нагрузочной диаграмме искомый диапазон регулирования скорости вращения. Составление принципиальной схемы и расчет статических характеристик.

Саратовский Государственный Технический Университет

Кафедра АЭУ

Курсовая работа по электроприводу

«Расчет электропривода»

Саратов - 2008

1. Выбор электродвигателя

2. Расчет параметров трансформатора

3. Выбор вентилей

4. Расчет параметров якорной цепи

5. Расчет параметров системы управления

5.1 Для верхней границы диапазона

5.2 Для нижней границы диапазона

6. Расчет параметров отсечки

7. Построение статических характеристик

Заключение

Приложение

1. Выбрать электродвигатель и элементы системы управления автоматизированного привода, обеспечивающего при заданной нагрузочной диаграмме диапазон регулирования скорости вращения D=75 с относительной ошибкой =15%. При пуске двигателя и перегрузках вращающий момент должен удерживаться в пределах от М1кр=85 Нм до М2кр=115 Нм. Номинальная угловая скорость n=1950 об/мин.

2. Составить принципиальную схему привода.

1. Выбор электродвигателя

Рассчитаем эквивалентный момент, используя нагрузочную диаграмму:

Рассчитаем мощность двигателя:

Исходя из мощности двигателя и номинальной угловой скорости, выбираем электродвигатель ПБСТ-63 с номинальными параметрами:

Uн=220 В; Pн=11 кВт; Iн=54 А; nн=2200 об/мин; wя=117; Rя=0,046 Ом; Rд=0,0186 Ом; wв=2200; Rв=248 Ом.

Рассчитаем действительный момент и параметры двигателя:

2. Расчет параметров трансформатора

Напряжение вторичной цепи и мощность трансформатора:

кс=1,11-коэффициент схемы

кз=1,1-коэффициент запаса, учитывающий возможное падение напряжения

кR=1,05-коэффициент запаса, учитывающий падение напряжения в вентилях и коммутацию тока в вентилях.

кi=1,1-коэффициент запаса, учитывающий отклонение формы тока в вентилях от прямоугольной км=1,92-коэффициент схемы

Исходя из напряжения вторичной цепи и мощности, выбираем трансформатор ТТ-25 с номинальными параметрами: Sтр=25 кВт; U2=416±73 В; I2ф=38 А;

uк=10%; iхх=15%. Рассчитаем сопротивления трансформатора:

3. Выбор вентилей

С учетом диапазона регулирования скорости выбираем однофазную систему управления электрическим приводом. Среднее значение тока вентиля: . Номинальный ток вентиля: . кз=2,2-коэффициент запаса, m=2-коэффициент, зависящий от схемы выпрямления. Наибольшее обратное напряжение, прикладываемое к вентилю:

Номинальное напряжение вентилей:

Выбираем вентили Т60-8.

4. Расчет параметров якорной цепи

Наибольшая допустимая величина переменной составляющей выпрямленного тока:

Требуемая индуктивность якорной цепи:

Общая индуктивность двигателя и трансформатора меньше, чем требуемая, поэтому в якорную цепь необходимо включить сглаживающий дроссель с индуктивностью:

Активное сопротивление дросселя:

Активное сопротивление якорной цепи:

5. Расче т параметров системы управления

Для верхней границы диапазона

Что соответствует углу регулировки По зависимости определяем изменение ЭДС и угла регулирования:

что в процентном соотношении:

Нижняя граница диапазона:

Что соответствует углу регулировки

По зависимости определяем изменение ЭДС и угла регулирования:

При этом коэффициент передачи преобразователя равен:

Коэффициент передачи СИФУ определим по рис. 2 Приложения:

Общий коэффициент передачи системы в разомкнутом состоянии:

Наибольшая статическая ошибка в разомкнутом состоянии:

что в процентном соотношении:

Наибольшая статическая ошибка в замкнутом состоянии:

Следовательно, на нижней границе диапазона регулирования относительная ошибка больше допустимой. Для уменьшения статической ошибки введем в систему управления промежуточный усилитель. Определим требуемый коэффициент передачи всей системы в разомкнутом состоянии:

Следовательно, коэффициент передачи промежуточного усилителя должен быть не менее:

6. Расчет параметров отсечки

В качестве стабилитрона V1 принимаем стабилитрон Д 818 (напряжение стабилизации Uст1=9 В Uу макс=11 В).

Коэффициент передачи токовой отсечки:

Напряжение стабилизации стабилитрона V2:

Функциональная схема электропривода представлена на рис. 1 Приложения.

В качестве усилителя использован интегральный усилитель-ограничитель со стабилитронами в цепи обратной связи.

7. Построение статических характеристик

Напряжение ограничения найдем из статической характеристики СИФУ (рис. 2 Приложения.):

Заключение

В ходе расчета курсовой работы была изучена методика расчета параметров основных составляющих электрического привода, таких как электрический двигатель, трансформатор, система импульсно-фазового управления и тиристорный преобразователь. Была рассчитана и построена статическая характеристика электрического привода, дающая представление о скорости привода с изменением тока якоря электрического двигателя, нагрузочная диаграмма, дающая представление о нагрузке, которую испытывает привод во время работы. Также были составлены принципиальная и функциональная схемы, дающие представление об электрических элементах, входящих в систему управления электрическим приводом. Таким образом, был реализован целый комплекс расчетов и построений, который развивает у студента знание и умение рассчитывать электрический привод, целиком, так и его основные части.

Приложение

Рис.1 Функциональная схема электропривода.





Чтобы скачать работу бесплатно нужно вступить в нашу группу ВКонтакте . Просто кликните по кнопке ниже. Кстати, в нашей группе мы бесплатно помогаем с написанием учебных работ.


Через несколько секунд после проверки подписки появится ссылка на продолжение загрузки работы.
Бесплатная оценка
Повысить оригинальность данной работы. Обход Антиплагиата.

РЕФ-Мастер - уникальная программа для самостоятельного написания рефератов, курсовых, контрольных и дипломных работ. При помощи РЕФ-Мастера можно легко и быстро сделать оригинальный реферат, контрольную или курсовую на базе готовой работы - Расчет электропривода.
Основные инструменты, используемые профессиональными рефератными агентствами, теперь в распоряжении пользователей реф.рф абсолютно бесплатно!

Как правильно написать введение?

Секреты идеального введения курсовой работы (а также реферата и диплома) от профессиональных авторов крупнейших рефератных агентств России. Узнайте, как правильно сформулировать актуальность темы работы, определить цели и задачи, указать предмет, объект и методы исследования, а также теоретическую, нормативно-правовую и практическую базу Вашей работы.


Секреты идеального заключения дипломной и курсовой работы от профессиональных авторов крупнейших рефератных агентств России. Узнайте, как правильно сформулировать выводы о проделанной работы и составить рекомендации по совершенствованию изучаемого вопроса.



(курсовую, диплом или отчёт) без рисков, напрямую у автора.

Похожие работы:

29.06.2010/курсовая работа

Расчет, обоснование выбора электродвигателя: продолжительность включения, грузоподъемная сила, мощность, угловая скорость. Особенности и методы расчета канатно-блочной системы, барабана, редуктора (масса, габариты). Изучение компоновки электрической тали.

17.08.2009/дипломная работа

Определение периодической, апериодической составляющих тока симметричного короткого замыкания, ударного тока короткого замыкания, отдельных составляющих несимметричного короткого замыкания. Вычисление напряжения, построение его векторной диаграммы.

14.08.2010/курсовая работа

Расчет моментов сопротивления на баллере руля, порядок расчета электрогидравлического привода, проверка электродвигателя на нагрев. Расчет и построение нагрузочной характеристики электродвигателя рулевого устройства по системе генератор - двигатель.

28.01.2009/контрольная работа

Частотное регулирование асинхронного двигателя. Механические характеристики двигателя. Простейший анализ рабочих режимов. Схема замещения асинхронного двигателя. Законы управления. Выбор рационального закона управления для конкретного типа электропривода.

19.03.2010/курсовая работа

Техническая характеристика технологической установки, классификация подъемных кранов по конструкции. Требования к электроприводу и системе управления и сигнализации, выбор величины питающих напряжений. Расчет мощности и выбор приводного электродвигателя.

20.07.2008/дипломная работа

Станкостроительный завод: электроснабжение, графики нагрузок, центр электрических нагрузок, схема электроснабжения, мощность конденсаторных установок и трансформаторов, выбор напряжений, сетей завода и токов, экономическая часть и охрана труда.

5.10.2008/курсовая работа

Автоматизация промышленного производства. Получение навыков в расчёте электронного автоматического моста. Описание прибора и принцип его действия. Измерение, запись и регулирование температуры. Проектирование систем автоматического регулирования.

1. Анализ и описание системы «электропривод – рабочая машина»

1.1 Количественная оценка вектора состояния или тахограммы требуемого процесса движения

1.2 Количественная оценка моментов и сил сопротивления

1.3 Составление расчетной схемы механической части электропривода

1.4 Построение нагрузочной диаграммы и механической характеристики рабочей машины

2. Анализ и описание системы «электропривод - сеть» и «электропривод - оператор»

3.Выбор принципиальных решений

3.1 Построение механической части электропривода

3.2 Выбор типа привода (двигателя)

3.3 Выбор способа регулирования координат

3.4 Оценка и сравнение выбранных вариантов

4. Расчет силового электропривода

4.1 Расчет параметров и выбор двигателя

4.2 Расчет параметров и выбор силового преобразователя

5. Расчет статических механических и электромеханических характеристик двигателя и привода

6. Расчет переходных процессов в электроприводе за цикл работы

7. Проверка правильности расчета мощности и окончательный выбор двигателя

1. Анализ и описание системы «электропривод – рабочая машина»

1.1 Количественная оценка вектора состояния или тахограммы требуемого процесса движения

Скорость электропривода во время правки и на холостом ходу, которая выбирается из диапазона скоростей от 1,45 м/с до 2,4 м/с.

По описанию технологического процесса [ 1] , можно построить тахограмму требуемого процесса движения. По требованию процесса цикл работы происходит при постоянной скорости. Пуск и переход на другую скорость не входит в цикл работы. Тахограмма показана на рисунке 1 .

Рисунок 1- Тахограмма рабочего процесса

Определим значение минимальной угловой скорости двигателя исходя из тахограммы и условий задания:

(1)

где i - передаточное число редуктора;

v 1 - минимальная скорость передвижения листа;

R - радиус рабочих и опорных роликов.

Максимальная угловая скорость двигателя:


(2)

где v 2 - максимальная скорость передвижения листа.

Рассмотрим два случая:

1)прогонка максимальной длины листа с минимальной скоростью;

2) прогонка минимальной длины листа с максимальной скоростью.

Первый случай.

Время прокатки:

(3)

где L max - максимальная длина листа.

По условию задания ПВ механизма - 75%. Определим время цикла:

(4)

Время холостого хода:

Второй случай.

(6)


Будем выбирать двигатель с расчётным режимом S1 т.к. за время цикла работы привода отсутствуют паузы.

1.2 Количественная оценка моментов и сил сопротивления

Зная общий суммарный момент при максимальной нагрузке, отнесенный к рабочим валкам, можно определить статический момент, приведенный к валу:

(7)

где - КПД механизма (считается неизменным).

Момент холостого хода, приведенный к валу двигателя, задан и равен:

Момент на валу двигателя во время правки определяется по формуле:

1.3 Составление расчетной схемы механической части электропривода

Для теоретического исследования реальную механическую часть электропривода (рисунок 2) заменяем динамически эквивалентной приведенной расчётной схемой, состоящей из сосредоточенных инерционных элементов, соединённых между собой упругими связями, и обладающей таким же энергетическим запасом, как и реальная исходная система привода. Параметрами эквивалентной приведенной расчётной схемы являются суммарные приведенные моменты инерции масс, образованные приведенными массами, связи между которыми приняты жёсткими, и эквивалентные приведенные жёсткости упругих механических связей.

Рисунок 2 - Кинематическая схема механизма

Электропривод состоит из следующих кинематических элементов:

1 - электродвигатель;

2 - редуктор;

3 - шестерная клеть;

4 - универсальные шпиндели;

5 - рабочая клеть.

Момент инерции муфт между двигателем и редуктором равен 16 кг*м 2 ,момент инерции муфт между редуктором и шестерной клетью равен 40,2 кг*м 2 , одного шпинделя - 0,003 кг*м 2 . Момент инерции редуктора, приведенный к валу двигателя, равен 30% от J дв.

Количество шпинделей -17, количество рабочих роликов -17, опорных - 15.

Механическая часть электропривода листоправильного стана представляет собой трехмассовую систему, состоящую из роторов (якорей) двигателей с полумуфтами на валах - J1, редуктора с полумуфтами на его входном и выходном валах - J2 и рабочий орган машины, также с полумуфтами на входном валу - J3. Упругими звеньями данной системы являются жесткости соединительных муфт С 12 и С 23 .



Рассчитаем параметры полученной схемы.

Момент инерции первой массы:

где J пм1 - момент инерции полумуфт на валах двигателей.

Момент инерции редуктора с полумуфтами на его входном и выходном валах (учитывая, что момент инерции редуктора, приведенный к валу двигателя, равен 30% от J дв) равен:

где J пм2 - момент инерции полумуфты на выходном вале редуктора.

Момент инерции рабочего органа привода с полумуфтами на входном валу, приведенный к валу двигателя, рассчитывается по следующему выражению:

(11)

где J рол – суммарный момент инерции рабочих и опорных роликов;

J шп - момент инерции шпинделей;

J пм - момент инерции полумуфт;

i – передаточное отношение редуктора.

Определим момент инерции ролика:

где L - длина ролика, м;

D - диаметр ролика, м;

Плотность материала(=7,66*10 3 кг/м 3).

Учитывая количество рабочих и опорных роликов, получим:

Момент инерции шпинделей:

Тогда момент инерции рабочего органа будет равен:

Жесткость муфты между редуктором и шестерной клетью, приведенная к валу двигателя:

.(15)

Учитывая, что при параллельном соединении упругих элементов жесткости складываются, найдем жесткости соединительных муфт С 12 и С 23 ,которые являются упругими звеньями трехмассовой системы:


где С м1 - жесткость соединительной муфты между двигателем и редуктором.

Расчет переходных процессов в трехмассовой системе сложен, поэтому преобразуем систему в двухмассовую.



Рассчитаем параметры схемы. Эквивалентная жесткость двухмассовой расчетной схемы:

Переход и обоснование перехода к одномассовой расчетной схеме будет приведен ниже.


1.4 Построение нагрузочной диаграммы и механической характеристики рабочей машины

Нагрузочная диаграмма механизма представляет собой зависимость приведенного к валу двигателя момента в функции времени за цикл работы.

Рабочий цикл представляет собой чередование работы привода при движении листа и холостая работа машины до начала следующего цикла работы. Строим упрощенную нагрузочную диаграмму рабочей машины, которая строится по рассчитанным для каждого участка цикла работы статическим нагрузкам, то есть без учета динамических нагрузок. Динамические нагрузки не входят в цикл работы, так как машина работает с постоянной скоростью.

Упрощенная нагрузочная диаграмма имеет вид:

На интервале холостого хода момент равен моменту холостого хода;

На интервале правки момент равен сумме моментов статического на оси рабочих валков, приведенного к валу двигателя и холостого хода.

Нагрузочная диаграмма представлена на рисунке 5.

Рисунок 5 – Нагрузочная диаграмма механизма

Механическая характеристика рабочей машины есть зависимость приведенного статического момента от скорости вала двигателя. Согласно заданию эта зависимость близка к параболической.

Механическая характеристика рабочей машины представлена на рисунке 6.

Рисунок 6 – Механическая характеристика рабочей машины


2. Анализ и описание системы «электропривод-сеть» и «электропривод- оператор»

Электропривод листоправильного стана получает питание от 3-х фазной сети переменного тока частотой 50 Гц, напряжением 380В.

Стандартами предусмотрено и допускается изменение напряжения сети ±10% и частоты ±2,5 % (ГОСТ 13109-87). Данное явление вызвано, среди всего прочего, наличием других мощных потребителей энергии в условиях цеха, завода. Это значительно влияет на работу двигателей, накладывает дополнительные требования к организации их работы.

При помощи автоматического выключателя QF1 подключаем напряжение на преобразователь частоты.

Нажатием кнопки ПУСК привод включается, далее привод работает в автоматическом режиме, для постоянного контроля работы привода оператор не требуется.

3. Выбор принципиальных решений

3.1 Построение механической части электропривода

Кинематическая схема главного электропривода листоправильного стана изображена на рисунке 2. Основная операция - правка, производится с помощью вращающихся валков, расположенных в рабочей клети. Верхний рабочий валок перемещается в вертикальной плоскости, а ось нижнего валка находится всегда в неизменном положении.

Передаточные механизмы в раскатном стане состоят из редуктора, шестерной клети, рабочих шпинделей и соединительных муфт.

Редуктор предназначен для того, чтобы при небольших скоростях раскатки получить возможность применение двигателя с относительно большой номинальной скоростью и тем самым снизить габариты и стоимость двигателя и всей установки в целом.

Шпиндели служат для передачи вращения валкам от шестерной клети. Необходимость их применения заключается в том, что с изменением положения верхнего валка изменяется и расстояние между этим валком и шестерной клетью, а также угол между валом шестерной клети и шпинделем.

Муфты применяются для соединения шестерной клети и двигателя с редуктором.

3.2 Выбор типа привода (двигателя)

Основой выбора типа двигателя является технические условия на проектирование привода листоправильного стана:

Продолжительный режим работы;

Плавное регулирование скорости в заданном диапазоне.

Выше перечисленным условиям соответствуют следующие приводы:

1 Частотный преобразователь - асинхронный двигатель;

2 Управляемый выпрямитель - двигатель постоянного тока;

3 Каскадная схема;

4 Генератор - двигатель.

3.3 Выбор способа регулирования координат

При выборе способа регулирования координат (скорости) необходимо учитывать энергетический аспект выбора способа регулирования. Это значит, что минимальный габарит двигателя и его полное использование по нагреву имеет место тогда, когда способ регулирования скорости по показанию допустимой нагрузки соответствует зависимости нагрузки от скорости.

Так как механическая характеристика механизма является вязкой нагрузкой, то целесообразно использовать способ регулирования скорости при постоянстве мощности, т.е. регулирование с Р = const. В случае применения такого способа двигателю обеспечивается наилучший тепловой режим.

В системе частотный преобразователь (АИН ШИМ) – асинхронный двигатель необходимая скорость получается путем изменения частоты и формирования напряжения на статоре (вольт частотное управление) либо путем регулирования частоты и формировании вектора основного потокосцепления машины (векторное управление).

В системах управляемый выпрямитель – двигатель постоянного тока и генератор – двигатель необходимая скорость получается путем изменения напряжения питания якоря.

В каскадной схеме регулирование скорости осуществляется путем введения добавочной ЭДС в цепь ротора машины.


3.4 Оценка и сравнение выбранных вариантов

Система генератор – двигатель морально устарела, поэтому при сравнении выбранных вариантов учитываться не будет.

Проведение строгих технико-экономических расчётов не представляется возможным из-за отсутствия требуемых исходных данных, поэтому для оценки и сравнения выбранных вариантов воспользуемся приблизительным методом – “методом экспертных оценок”. Сравнение вариантов решения производится относительно n характеристик системы, важных с точки зрения цели проектирования путём сравнения определённых значений соответствующих показателей качества q i . Показатели качества служат для количественной характеристики степени выполнения требований задания на проектирование электропривода, а также других требований рабочей машины.

Оценку электроприводов будем вести по следующим показателям качества:

1 - диапазон регулирования;

2 - КПД электропривода;

3 - коэффициент мощности;

4 - массогабаритные показатели;

5 - стоимость электропривода;

6 - надежность электропривода;

7 - ресурс работы;

8 - затраты на эксплуатацию;

9 - точность регулирования;

Оценим выполнение требований к i-ой характеристике системы по следующему критерию:

5 - требования к i-ой характеристике системы выполнено очень хорошо;

qi = 4 - требования к i-ой характеристике системы выполнено хорошо;

3 - требования к i-ой характеристике системы выполнено удовлетворительно;

2 - требования к i-ой характеристике системы выполнено неудовлетворительно.

Системы ПЧ – АД и УВ – ДПТ с обратной связью по скорости обеспечивают очень большой диапазон регулирования, поэтому требования к диапазону регулирования выполняются очень хорошо. В каскадной схеме диапазон ограничивается мощностью преобразователя, т.е. при увеличении диапазона мощность преобразователя становится больше мощности двигателя, поэтому требования к диапазону регулирования выполняются удовлетворительно.

КПД приводов мощностью достаточно высок, поэтому требования к КПД привода выполняются очень хорошо.

Требования к коэффициенту мощности во всех приводах выполняются хорошо.

Массогабаритные показатели привода определяются массогабаритными показателями двигателя и преобразователя. Современные приводы ПЧ – АД и УВ – ДПТ имеют очень хорошие массогабаритные показатели, поэтому требования к массогабаритным показателям привода выполняются очень хорошо, а каскадная схема имеет несколько худшие массогабаритные показатели, поэтому требования к массогабаритным показателям привода выполняются хорошо.

Требование к стоимости в приводах УВ – ДПТ и каскадной схемы выполняется очень хорошо, а в приводе ПЧ – АД несколько хуже в связи тем, что стоимость ПЧ – АД несколько выше стоимости УВ – ДПТ и каскадной схеме.

Асинхронный двигатель с короткозамкнутым ротором не имеет коллекторного узла и щеточных контактов, поэтому требования к надежности и ресурсу работы выполняются очень хорошо. В каскадной схеме двигатель не имеет коллекторного узла, но имеет щеточный контакт, поэтому требования к надежности и ресурсу работы выполняются хорошо. Двигатель постоянного тока имеет коллекторный узел, поэтому требования к надежности выполняются неудовлетворительно, а при надлежащем уходе за коллектором требования к ресурсу работы выполняются удовлетворительно.

Привод ПЧ – АД не требует эксплуатационных затрат, поэтому требования к эксплуатационным затратам выполняются очень хорошо. В каскадной схеме необходима периодическая проверка щеточных контактов, поэтому требования к эксплуатационным затратам выполняются хорошо. В приводе УВ – ДПТ необходим более частый осмотр коллекторного узла, а также периодическая чистка щеток, поэтому требования к эксплуатационным затратам выполняются удовлетворительно.

В приводе УВ – ДПТ требования к точности регулирования выполняются очень хорошо. В приводе ПЧ – АД требования к точности регулирования выполняются хорошо. В каскадной схеме требования к точности регулирования выполняются удовлетворительно.

Выбор варианта в качестве наилучшего зависит от того, насколько равноправными являются характеристики системы, т.е. нужно оценить их значимость. Для этого вводятся весовые коэффициенты λ i , которые можно определить следующим образом:

5 - i-я характеристика системы имеет определяющее значение для цели разработки;

4 - -“- очень большое, но не определяющее значение;

li= 3 - -“- важное;

2 - -“- желательно учесть;

1 - -“- несущественно для цели разработки.

Задачей электропривода является совершение полезной работы с минимумом потерь, поэтому КПД электропривода имеет определяющее значение.

Потребление реактивной мощности из сети нормируется, (за превышение нормы предприятию приходится платить штраф), поэтому коэффициент мощности имеет определяющее значение.

Так как листоправильный стан является агрегатом непрерывного действия и невынужденный простой его приводит к огромным убыткам, поэтому надежность и ресурс работы имеют определяющее значение.

Согласно заданию привод должен обеспечить относительно небольшой диапазон регулирования, поэтому этот показатель качества не имеет очень большого и определяющего значения и его можно охарактеризовать как важный.

Стоимость имеет очень большое значение. Однако, как известно, стоимость тесно связана с качеством, поэтому такой показатель как стоимость имеет большое, но не определяющее значение.

Обычно на металлургических предприятиях имеются помещения достаточные для размещения стана, поэтому массогабаритные показатели стана не имеет очень большого и определяющего значения. Однако с увеличение массы стана увеличивается и его стоимость, поэтому этот показатель можно охарактеризовать как важный.

Оценочная диаграмма представлена на рисунке 7.

Рисунок 7 – Оценочная диаграмма (показатели качества: 1 - диапазон регулирования; 2 – КПД электропривода; 3 - коэффициент мощности; 4 - массогабаритные показатели; 5 - стоимость электропривода; 6 - надежность электропривода; 7 - ресурс работы; 8 - затраты на эксплуатацию; 9 - точность регулирования)


Выбор наилучшего решения производится определением взвешенной суммы, (лучший вариант имеет большую сумму) по формуле:

где - показатель качества;

Весовой коэффициент;

Взвешенная сумма.

Определим взвешенные суммы:

В результате получаем, что максимальную взвешенную сумму имеет следующий привод: преобразователь частоты – асинхронный двигатель.

Следовательно, данный привод и подлежит дальнейшему расчету.


4. Расчет силового электропривода

4.1 Расчет параметров и выбор двигателя

Расчетный режим работы двигателя – длительный с переменной нагрузкой, так как в процессе работы двигателя паузы отсутствуют, и нагрузка изменяется скачками (рисунок 5).

Так как необходимые исходные данные для расчета мощности двигателя методами средних потерь, эквивалентного тока отсутствуют, поэтому воспользуемся менее точным методом – методом эквивалентного момента, считая, что постоянные потери, сопротивления двигателя в процессе работы не изменяются, а также, что момент, развиваемый двигателем, пропорционален току.

Согласно нагрузочной диаграмме и механической характеристике рабочей машины момент эквивалентный равен:

(21)

где - коэффициент ухудшения охлаждения машины при работе со скоростью ;

Коэффициент ухудшения охлаждения при паузах, зависящий от вентиляции двигателя (для закрытых самовентилируемых двигателей =0,45 -0,55)

Диапазон регулирования при работе со скоростью .

Дополнительную нагрузку, создаваемую динамическим моментом, будем учитывать коэффициентом запаса .

Рассчитаем момент эквивалентный без учета коэффициента ухудшения охлаждения машины при работе со скоростью отличной от номинальной для двух предельных режимов работы привода:

1)прогонка максимальной длины листа с минимальной скоростью:

;

2) прогонка минимальной длины листа с максимальной скоростью:

Примем момент наибольший из двух приведенных случаев:

.

По заданию проекта требуется обеспечить работу в диапазоне скоростей, следовательно, частоты вращения двигателя:

об/мин;(22)

об/мин;(23)

Минимальная частота вращения двигателя - n дв =500 об/мин, она меньше требуемой. Поэтому регулировать приводом мы будем в 1-ой зоне.

Применяя частотно регулируемый привод, мы сможем обеспечить требуемую частоту вращения.

Оценим необходимую мощность двигателя:


Критерии выбора двигателя следующие:

При выборе необходимо выбирать двигатель с , чтобы более полно использовать двигатель по мощности.

Однако промышленностью выпускаются двигатели (стандартной серии 4А) мощностью больше 197,3 кВт (200кВт) только на обороты свыше 1000 об/мин (104,6 рад/с) и выше, причем при увеличении мощности увеличивается номинальная скорость двигателей.

Так же при увеличении номинальной скорости двигателя уменьшается номинальный момент, согласно формуле

откуда следует, что для того чтобы двигатель не перегревался в процессе работы необходимо завысить мощность двигателя.

Таким образом, необходимо выбирать двигатель мощностью и об/мин. Однако стандартного двигателя (серии 4А) с такими параметрами нет.

Из-за невозможности выполнения привода большой мощности с одним двигателем будем строить электропривод, состоящий из двух машин. Взаимосвязный электропривод в установках большой мощности позволяет уменьшить нагрузку каждого привода и тем самым облегчить передачу к рабочему органу, уменьшить суммарный момент инерции роторов двигателей.

Таким образом, из справочника выбираем двигатели (серии 4А) с идентичными параметрами (поэтому далее все расчеты будем производить для одного двигателя):

4А355M12У3(IP44),

Р н = 110кВт – номинальная мощность,

n = 500 об/мин – синхронная частота вращения,

s н = 0,02 – номинальное скольжение,

Номинальный КПД,

- момент инерции ротора,

Кратность критического момента,

Кратность пускового момента,

О.е.; о.е.; о.е.; о.е.; о.е. – параметры схемы замещения в о.е.

Номинальная скорость двигателя равна:

Номинальный момент двигателя:

(28)

Для того чтобы двигатель не перегревался, необходимо, чтобы момент допустимый по нагреву двигателя (равный моменту номинальному двигателя) был больше либо равен моменту эквивалентному:


(29)

Таким образом, выбранный двигатель проходит по нагреву.

Проверяем правильность выбора двигателя по перегрузочной способности и по условиям пуска.

Привод пускается на холостом ходу, тогда:

(30)

По перегрузочной способности:

(31)

где U = 0.9U н – учитываем возможное снижение питающего напряжения на 10%.

4.2 Расчет параметров и выбор силового преобразователя

Требуется выбрать преобразователь частоты со следующими характеристиками:

Тип преобразователя – АИН ШИМ;

Закон управления – P=const;

Питающая сеть: ~3 380В 50Гц;

Мощность преобразователя – Р=75 кВт.

Выбираем преобразователь Omron 3G3FV А4750 CUE. Высоко динамичный с большой глубиной регулирования. Пусковой момент до 150% с 3 Hz. Отличается режимом векторного управления, возможностью работы с полным моментом в области нулевых частот и улучшенными динамическими характеристиками: имеет функцию автоматического определения параметров электродвигателя. 7 дискретных входов (6 из них программируемые), 3 аналоговых входа (1 программируемый) (0-10В или 4-20мА). 2 аналоговых выхода для мониторинга частоты или тока. 2 программируемых релейных выхода (до 1А). 2 опторазвязанных выхода Встроенный RS232/RS485/422 + PID + Энергосбережение + neuro-Fuzzy + крановые характеристики.

Таблица 1 – Характеристики преобразователя

Параметр

Значение

Мощность (кВт)

Входное напряжение (В)

Входная частота (Гц)

Допустимое колебание напряжения

от -15% до +10%

Диапазон частоты (Гц)

Разрешение выходной частоты (Гц)

Управление двигателем

вольт-частотное / векторное с обратной связью

Несущая частота (кГц)

Коммуникационные возможности

Modbus; Compo Bus/D (Device Net); Profibus DP Sysmac Bus; Interbus

Аналоговый выход (0-10 В)

Количество фиксированных скоростей

Аналоговое задание скорости

Время ускорения/замедления

от 0.01 до 6000 сек.

Степень защиты

Частотный преобразователь обеспечивает полную защиту преобразователя и двигателя от перегрузок по току, перегрева, утечки на землю, и обрыва фазы.


5. Расчет статических механических и электромеханических характеристик двигателя и привода

Механическая характеристика рассчитывается по формуле:

(32)

где - фазное напряжение на статоре;

Активное сопротивление фазы статора, Ом;

Активное сопротивление фазы ротора, приведенное к цепи статора, Ом;

Индуктивное сопротивление фазы статора, Ом;

Индуктивное сопротивление фазы ротора, приведенное к цепи статора, Ом;

s – скольжение;

Скорость идеального холостого хода (магнитного поля).

Сопротивления фаз статора и приведенные сопротивления фаз ротора рассчитаем по справочным данным.

Базисное значение сопротивления:

(33)

где в качестве базисных значений напряжения и тока принимаем номинальные значения фазного напряжения и тока статора:


Построим естественную механическую характеристику по формуле (41) используя математический пакет Mathcad, учитывая, что , подставляя , откладывая по оси х момент М, а по оси у - скорость двигателя .

Естественная механическая характеристика двигателя представлена на рисунке 8.

Рисунок 8 - Естественная механическая характеристика двигателя

Рассчитаем электромеханические характеристики двигателя.

В качестве базисной величины тока, принимаем номинальное значение тока ротора, приведенного к статорной цепи.

Зависимость приведенного тока ротора от скольжения определяется по формуле:

(36)

Зависимость тока статора от скольжения определяется по формуле:

(37)

где - относительный ток ротора;

Максимальное значение относительного тока ротора;

Относительный ток намагничивания;

Номинальный ток статора.

Максимальное значение относительного тока ротора:

(38)

где - критическое скольжение;


.(39)

Относительный ток намагничивания:

(40)

Относительный ток ротора:

(41)

Построим естественную электромеханическую характеристику роторного тока и электромеханическую характеристику статорного тока, используя математический пакет Mathcad, подставляя , откладывая по оси х ток I, а по оси у - скорость двигателя .

Естественные ЭМХ двигателя представлены на рисунке 9.

Рисунок 9 - Естественные электромеханические характеристики двигателя


Так как для регулирования скорости применяется ПИ – регулятор (будет показано ниже), который дает нулевую статическую ошибку, поэтому механическая характеристика привода будет абсолютно жесткой.

Рисунок 10 - Механическая характеристика привода


6. Расчет переходных процессов в электроприводе за цикл работы

Для получения более простых передаточных функций регуляторов необходимо перейти от двухмассовой расчетной схемы к одномассовой расчетной схеме.

Обоснование перехода к одномассовой расчетной схеме:

Используются только обратные связи по переменным двигателя;

Частота собственных колебаний:

Условие перехода: .

Как показано ниже Т  привода составляет 0,0258, тогда . Тогда условие перехода выполняются () и, следовательно, можно перейти к одномассовой расчетной схеме.

Суммарный момент инерции одномассовой расчетной схемы будет равен:

Одномассовая расчетная схема представлена на рисунке 11

Рисунок 11 - Одномассовая расчетная схема


При регулировании зависимость момента допустимого по нагреву двигателя от скорости должна повторять зависимость момента статического от скорости.

Для управления приводом будем использовать двухконтурную систему автоматического регулирования с вольт/частотным управлением с последовательной коррекцией звеньев, с внутренним контуром регулирования момента и внешним контуром регулирования скорости.

При вольт/частотном управлении организуется два канала управления: канал управления частотой питания и канал управления напряжением. Стабилизация скорости осуществляется путем регулирования напряжения в функции частоты и в функции нагрузки.

Рассмотрим канал регулирования частоты.

Разлаживая уравнения динамической механической характеристики в ряд и линеаризуя полученные уравнения в окрестности точки М=0, s=0, получим линеаризованную модель асинхронного двигателя, справедливую для .

Вследствие того, что в асинхронном электроприводе сложно измерять момент двигателя, вместо регулирования момента по отклонению применяют регулирование по возмущению. Т.к. возмущающим воздействием для контура регулирования момента является скорость, то будем вводить положительную обратную связь по скорости, с коэффициентом передачи .

Регулировать скорость двигателя будем по отклонению, вводя отрицательную обратную связь по скорости.

Структурная схема канала регулирования частоты представлена на рисунке 12.


Рисунок 12 - Структурная схема канала регулирования частоты

Рассмотрим контур регулирования момента.

Для статического режима:

Нулевая ошибка будет обеспечена, если:

.(44)

Максимальное значение момента двигателя:

При вольт/частотном управлении с :

(46)(47)

Электромагнитная постоянная времени:

(48)


Жесткость механической характеристики:

(49)

Коэффициент передачи преобразователя по частоте определяется отношением максимального сигнала на выходе преобразователя к максимальному сигналу на выходе регулятора момента:

.(50)

Максимальное значение момента ограничения равно критическому моменту естественной характеристики двигателя:

Из уравнения (45) находим К рм:

Регулятор момента представляется в виде П – регулятора.

Предельное значение коэффициента усиления обратной связи, обеспечивающее регулирования момента с нулевой ошибкой:

(53)

Для расчета контура скорости представим контур момента в виде звена:


Обозначив , получим передаточную функцию оптимизированного контура регулирования момента:

(55)

Структурная схема контура регулирования скорости представлена на рисунке 13

Рисунок 13 – Структурная схема контура регулирования скорости

Коэффициент передачи датчика отрицательной обратной связи по скорости рассчитывается как отношение максимальной скорости на соответствующее напряжение задания:

(56)

Малой некомпенсируемой постоянной времени контура регулирования скорости является электромагнитная постоянная двигателя, т.е. принимаем .

Большой компенсируемой постоянной времени контура регулирования скорости является механическая постоянная двигателя.

Для получения нулевой ошибки в статике и форсировки переходных процессов в динамике регулятор скорости должен быть ПИ – регулятор.

Настроим регулятор скорости на симметричный оптимум.

Желаемая передаточная функция контура скорости настроенного на симметричный оптимум:

.(57)

Передаточная функция объекта регулирования:

(58)

Разделив желаемую передаточную функцию контура скорости, на передаточную функция объекта регулирования получим передаточную функцию регулятора скорости:

;

.

Для того чтобы убрать перерегулирование, по заданию необходимо на входе контура скорости поставить фильтр с постоянной времени и следующей передаточной функцией:

(61)

Расчет переходных процессов производятся в пакете Matlab.

В модели будем использовать одномассовую консервативную расчетную схему привода.

Модель привода представлена на рисунке 14.

Рисунок 14 – Модель привода

Графики переходных процессов – момента электромагнитного двигателя и скорости первой массы, приведенные к валу двигателя - представлены на рисунках 15, 16.


Рисунок 15 – График переходного процесса скорости первой массы

Рисунок 16 – График переходного процесса электромагнитного момента

В результате моделирования получили, что перерегулирование скорости составляет:


7. Проверка правильности расчета мощности и окончательный выбор двигателя

Проверку правильности расчета мощности выполним методом средних потерь.

Полные номинальные потери в двигателе равны:

Переменные номинальные потери в двигателе равны:

Тогда постоянные потери будут равны:

Средние потери за цикл работы равны:

(65)

где - потери в i-й момент времени,

Коэффициент ухудшения охлаждения при работе со скоростью ,

Т ц =6.9 с – время цикла.

Потери в i-й момент времени можно определить из следующего выражения:

,(66)

где,

Степень загрузки двигателя.

.(66’)

Подставляя (66’) в (65) получим:

(67)

Используя выражения (67) найдем средние потери за цикл работы.

Для нахождения средних потерь по формуле (67) воспользуемся моделью привода.

Сначала возводим в квадрат момент электромагнитный двигателя. Потом делим полученное значение на квадрат номинального момента и прибавляем . Затем интегрируем полученное значение и умножаем на , получаем значение средних потерь за цикл работы.

Модель для нахождения средних потерь за цикл работы представлена на рисунке 17.


Рисунок 17 - Модель для нахождения средний потерь за цикл работы

В результате моделирования было получено, что средние потери за цикл работы равны:

.

Тогда коэффициент загрузки двигателя составляет:

(68)

Таким образом, двигатель загружен на 80% (70%<80%<100%), следовательно, оставляем выбранный двигатель.

Расчетную мощность, необходимую для привода насоса ЦНС 180-1900, определим по формуле :

где Q - подача насоса, м 3 /с;

Н - напор, развиваемый насосом, м;

р - плотность перекачиваемой жидкости, кг/м 3 ,

(сеноманская вода имеет плотность 1012 кг/м 3);

з нас - КПД насоса, отн. ед.

КНС работают непрерывно при стабильной нагрузке.

Следовательно, электродвигатели насосов работают в

продолжительном режиме (S1). Тогда, расчетная мощность

насосного агрегата (с учетом коэффициента запаса, равного 1,2),

составит :

где К 3 - коэффициент запаса, отн. ед.;

з - КПД передачи, отн. ед.

Для привода центробежных насосов ЦНС 180-1900 выбираем синхронные двигатели, так как они наиболее полно удовлетворяют технологии работы КНС и, кроме того, обладают целым рядом преимуществ :

возможность регулирования значения и изменения знака реактивной мощности;

коэффициент полезного действия на 1,5 - 3 % выше, чем у асинхронного двигателя того же габарита;

наличие относительно большого воздушного зазора (в 2 - 4 раза больше, чем у асинхронного двигателя) значительно повышает надежность эксплуатации и позволяет, с механической точки зрения, работать с большими перегрузками;

строго постоянная частота вращения, не зависящая от нагрузки на валу, на 2 - 5 % выше частоты вращения соответствующего асинхронного двигателя; напряжение сети влияет на максимальный момент синхронного двигателя меньше, чем на максимальный момент асинхронного. Уменьшение максимального момента, вследствие понижения напряжения на его зажимах, может быть компенсировано форсировкой его тока возбуждения;

синхронные двигатели повышают устойчивость энергосистемы в нормальных режимах работы, поддерживают уровень напряжения;

могут быть изготовлены практически на любую мощность;

Принимая во внимание все выше сказанное, выбираем синхронные двигатели типа СТД 1600-2РУХЛ4 (производства Лысьвенского завода).

Технические данные электродвигателей приведены в табл. 1.2.

Таблица 1.2

Технические данные двигателя типа СТД 1600-2РУХЛ4

Параметр

Единица измерения

Значение

Мощность активная

Полная мощность

Напряжение

Частота вращения

Критическая частота вращения

Маховый момент ротора

Максимальный вращающий момент (кратность к номинальному вращающему моменту)

Ток статора фазный

Коэффициент мощности

0,9(опережающий)

Напряжение возбуждения

Ток возбуждения

Допустимый маховый момент механизма, приведенный к валу двигателя, при одном пуске из холодного состояния

Допустимое время прямого пуска при одном пуске из холодного состояния

Допустимый маховый момент механизма, приведенный к валу двигателя, при двух пусках из холодного состояния

Допустимое время прямого пуска при двух пусках из холодного состояния

Допустимый маховый момент механизма, приведенный к валу двигателя, при одном пуске из горячего состояния

Допустимое время прямого пуска при одном пуске из горячего состояния

Синхронные двигатели типа СТД 1600-2 выбираем закрытого исполнения с замкнутым циклом вентиляции и одним рабочим концом вала, который соединяется при помощи муфты с насосом ЦНС 180-1900. Обмотка статора таких двигателей имеет изоляцию "МОНОЛИТ - 2" класса нагревостойкости F . Эти двигатели допускают прямой пуск от полного напряжения сети, если маховые моменты приводимых механизмов не превышают значений, указанных в табл. 1.2.

Работа двигателей СТД 1600-2 при напряжении выше 110% от номинального не допускается, а при понижении cosц допускается

при условии, что ток ротора не превышает номинального значения.

В случае потери возбуждения эти двигатели могут работать в асинхронном режиме при закороченной обмотке ротора. Допустимая нагрузка в асинхронном режиме определяется нагревом обмотки статора и не должна превышать значения, при котором ток статора на 10% больше номинального. В таком режиме работа допускается в течение 30 минут. За это время должны быть приняты меры по восстановлению нормальной работы системы возбуждения.

Двигатели СТД 1600-2 допускают самозапуск с погашением поля ротора и ресинхронизацию. Длительность самозапуска не должна превышать допустимого времени пуска двигателя из горячего состояния (см. табл. 1.2), а частота - не более одного раза в сутки.

Двигатели СТД 1600-2 допускают работу при несимметричном напряжении питания. Допустимое значение тока обратной последовательности равно 10% от номинального. При этом ток в наиболее нагруженной фазе не должен превышать номинального значения.

Тиристорное возбудительное устройство (ТВУ) предназначено для питания и управления постоянным током обмотки возбуждения синхронного двигателя. ТВУ позволяет осуществлять ручное и автоматическое регулирование тока возбуждения двигателя СТД 1600-2 во всех нормальных режимах работы.

В комплект ТВУ входят тиристорный преобразователь с блоками управления и регулирования, силовой трансформатор типа ТСП. ТВУ питаются от сети переменного тока 380 В, 50 Гц. Напряжение питания цепей защиты - 220 В постоянного тока.

ТВУ обеспечивает:

переход с автоматического регулирования на ручное в пределах (0,3 - 1,4) 1 ном с возможностью подстройки указанных пределов регулирования;

автоматический пуск синхронного двигателя с подачей возбуждения в функции тока статора или времени;

форсировку по напряжению возбуждения до 1,75 U B H0M при номинальном напряжении источника питания с регулируемой продолжительностью форсировки 20-50 с. Форсировка возбуждения срабатывает при падении напряжения сети более чем на 15 - 20% от номинального, а напряжение возврата составляет (0,82 - 0.95) U H0M ;

ограничение угла отпирания силовых тиристоров по

минимуму и максимуму, ограничение тока возбуждения до

номинального значения с выдержкой времени, а также ограничение

значения тока форсировки до 1,41 в ном без выдержки времени;

форсированное гашение поля двигателя переводом преобразователя в инверторный режим. Гашение поля осуществляется при нормальном и аварийном отключениях двигателя, а также при работе автоматического включения резерва (АВР), при условии сохранения питания ТВУ;

автоматический регулятор возбуждения (АРВ) обеспечивает регулирование тока возбуждения СТД 1600-2 для поддержания напряжения сети с точностью до 1,1 U H0M .



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама