THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Усилители высоких частот (УВЧ) применяются для увеличения чувствительности радиоприемных средств - радиоприемников, телевизоров, радиопередатчиков. Помещенные между приемной антенной и входом радио или телеприемника, подобные схемы УВЧ увеличивают сигнал, поступающий от антенны (антенные усилители).

Использование таких усилителей позволяет увеличить радиус уверенного радиоприема, в случае радиостанций (приемо-передающих устройств -приемопередатчиков) либо увеличить дальность работы, либо при сохранении той же дальности уменьшить мощность излучения радиопередатчика.

На рис.1 приведены примеры схем УВЧ, часто используемых для увеличения чувствительности радиосредств. Значения используемых элементов зависят от конкретных условий: от частот (нижней и верхней) радиодиапазона, от антенны, от параметров последующего каскада, от напряжения питания и т.д.

На рис.1 (а) приведена схема широкополосного УВЧ по схеме с общим эмиттером (ОЭ). В зависимости от используемого транзистора данная схема может успешно применяться до частот в сотни мегагерц.

Необходимо напомнить, что в справочных данных на транзисторы приводятся предельные частотные параметры. Известно, что при оценке частотных возможностей транзистора для генератора, достаточно ориентироваться на предельное значение рабочей частоты, которое должно быть, как минимум, в два-три раза ниже предельной частоты, указанной в паспорте. Однако для ВЧ-усилителя, включенного по схеме ОЭ, предельную паспортную частоту уже необходимо уменьшать, как минимум, на порядок и более.

Рис.1. Примеры схем простых усилителей высокой частоты (УВЧ) на транзисторах.

Радиоэлементы для схемы на рис.1 (а):

  • R1=51к(для кремниевых транзисторов), R2=470, R3=100, R4=30-100;
  • С1=10-20, С2= 10-50, С3= 10-20, С4=500-Зн;

Значения конденсаторов приведены для частот УКВ-диапазона. Конденсаторы типа КЛС, КМ, КД и т.д.

Транзисторные каскады, как известно, включенные по схеме с общим эмиттером (ОЭ), обеспечивают сравнительно высокое усиление, но их частотные свойства относительно невысоки.

Транзисторные каскады, включенные по схеме с общей базой (ОБ), обладают меньшим усилением, чем транзисторные схемы с ОЭ, но их частотные свойства лучше. Это позволяет использовать те же транзисторы, что и в схемах с ОЭ, но на более высоких частотах.

На рис.1 (б) приведена схема широкополосного усилителя высокой частоты (УВЧ) на одном транзисторе, включенном по схеме с общей базой . В коллекторной цепи (нагрузка) включен LС-контур. В зависимости от используемого транзистора данная схема может успешно применяться до частот в сотни мегагерц.

Радиоэлементы для схемы на рис.1 (б):

  • R1=1к, R2=10к. R3=15к, R4=51 (для напряжения питания ЗВ-5В). R4=500-3 к (для напряжения питания 6В-15В);
  • С1=10-20, С2= 10-20, С3=1н, С4=1н-3н;
  • Т1 - кремниевые или германиевые ВЧ-транзисторы, например. КТ315. КТ3102, КТ368, КТ325, ГТ311 и т.д.

Значения конденсаторов и контура приведены для частот УКВ-диапазона. Конденсаторы типа КЛС, КМ, КД и т.д.

Катушка L1 содержит 6-8 витков провода ПЭВ 0.51, латунные сердечники длиной 8 мм с резьбой М3, отвод от 1/3 части витков.

На рис.1 (в) приведена еще одна схема широкополосного УВЧ на одном транзисторе , включенном по схеме с общей базой . В коллекторной цепи включен ВЧ-дроссель. В зависимости от используемого транзистора данная схема может успешно применяться до частот в сотни мегагерц.

Радиоэлементы:

  • R1=1к, R2=33к, R3=20к, R4=2к (для напряжения питания 6В);
  • С1=1н, С2=1н, С3=10н, С4=10н-33н;
  • Т1 - кремниевые или германиевые ВЧ-транзисторы, например, КТ315, КТ3102, КТ368, КТ325, ГТ311 и т.д.

Значения конденсаторов и контура приведены для частот СВ-, КВ-диапазона. Для более высоких частот, например, для УКВ-диапазона, значения емкостей должны быть уменьшены. В этом случае могут быть использованы дроссели Д01.

Конденсаторы типа КЛС, КМ, КД и т.д.

Катушки L1 - дроссели, для СВ-диапазона это могут быть катушки на кольцах 600НН-8-К7х4х2, 300 витков провода ПЭЛ 0,1.

Большее значение коэффициента усиления может быть получено за счет применения многотранзисторных схем . Это могут быть различные схемы, например, выполненные на основе каскодного усилителя ОК-ОБ на транзисторах разной структуры с последовательным питанием. Один из вариантов такой схемы УВЧ приведен на рис.1 (г).

Данная схема УВЧ обладает значительным усилением (десятки и даже сотни раз), однако каскодные усилители не могут обеспечить значительное усиление на высоких частотах. Такие схемы, как правило, применяются на частотах ДВ- и СВ-диапазона. Однако при использовании транзисторов сверхвысокой частоты и тщательном исполнении такие схемы могут успешно применяться до частот в десятки мегагерц.

Радиоэлементы:

  • R1=33к, R2=33к, R3=39к, R4=1к, R5=91, R6=2,2к;
  • С1=10н, С2=100, С3=10н, С4=10н-33н. С5=10н;
  • Т1 -ГТ311, КТ315, КТ3102, КТ368, КТ325 и т.д.
  • Т2 -ГТ313, КТ361, КТ3107 и т.д.

Значения конденсаторов и контура приведены для частот СВ-диапазона. Для более высоких частот, например, для КВ-диапазона, значения емкостей и инду ктивность контура (число витков) должны быть соответствующим образом уменьшены.

Конденсаторы типа КЛС, КМ, КД и т.д. Катушка L1 - для СВ-диапазона содержит 150 витков провода ПЭЛШО 0.1 на каркасах 7 мм, подстроечники М600НН-3-СС2,8х12.

При настройке схемы на рис.1 (г) необходимо подобрать резисторы R1, R3 так, чтобы напряжения между эмиттерами и коллекторами транзисторов стали одинаковыми и составили 3В при напряжении питания схемы 9 В.

Использование транзисторных УВЧ позволяет усиливать радиосигналы. поступающие от антенн, в теледиапазонах - метровые и дециметровые волны . При этом наиболее часто применяются схемы антенных усилителей, построенные на основе схемы 1(а).

Пример схемы антенного усилителя для диапазона частот 150-210 МГц приведена на рис.2 (а).

Рис.2.2. Схема антенного усилителя МВ-диапазона.

Радиоэлементы:

  • R1=47к, R2=470, R3= 110, R4=47к, R5=470, R6= 110. R7=47к, R8=470, R9=110, R10=75;
  • С1=15, С2= 1н, С3=15, С4=22, С5=15, С6=22, С7=15, С8=22;
  • Т1,Т2,ТЗ - 1Т311(Д,Л), ГТ311Д, ГТ341 или аналогичные.

Конденсаторы типа КМ, КД и т.д. Полосу частот данного антенного усилителя можно расширить в области низких частот соответствующим увеличением емкостей, входящих в состав схемы.

Радиоэлементы для варианта антенного усилителя для диапазона 50-210 МГц :

  • R1=47к, R2=470, R3= 110, R4=47к, R5=470, R6= 110. R7=47к, R8=470. R9=110, R10=75;
  • С 1=47, С2= 1н, С3=47, С4=68, С5=47, С6=68, С7=47, С8=68;
  • Т1,Т2,ТЗ - ГТ311А, ГТ341 или аналогичные.

Конденсаторы типа КМ, КД и т.д. При повторении данного устройства необходимо соблюдать все требования. предъявляемые к монтажу ВЧ-конструкций: минимальные длины соединяющих проводников, экранирование и т.д.

Антенный усилитель, предназначенный для использования в диапазонах телевизионных сигналов (и более высоких частот) может перегружаться сигналами мощных СВ-, КВ-, УКВ-радиостанций. Поэтому широкая полоса частот может быть неоптимальной, т.к. это может мешать нормальной работе усилителя. Особенно это сказывается в нижней области рабочего диапазона усилителя.

Для схемы приведенного антенного усилителя это может быть существенно, т.к. крутизна спада усиления в нижней части диапазона сравнительно низка.

Повысить крутизну амплитудно-частотной характеристики (АЧХ) данного антенного усилителя можно применением фильтра верхних частот 3-го порядка . Для этого на входе указанного усилителя можно применить дополнительную LС-цепь.

Схема подключения дополнительного LС-фильтра верхних частот к антенному усилителю приведена на рис. 2 (б).

Параметры дополнительного фильтра (ориентировочные):

  • С=5-10;
  • L - 3-5 витков ПЭВ-2 0,6. диаметр намотки 4 мм.

Настройку полосы частот и формы АЧХ целесообразно проводить с помощью соответствующих измерительных приборов (генератор качающейся частоты и т.д). Форму АЧХ можно регулировать изменением величин емкостей С, С1, изменением шага между витками L1 и числа витков.

Используя описанные схемотехнические решения и современные высокочастотные транзисторы (сверхвысокочастотные транзисторы - СВЧ-транзисторы) можно построить антенный усилитель ДМВ-диапазона Этот усилитель можно использовать как с У КВ-радиоприемником, например, входящим в состав УКВ-радиостанции, или совместно с телевизором.

На рис.3 приведена схема антенного усилителя ДМВ-диапазона .

Рис.3. Схема антенного усилителя ДМВ-диапазона и схема подключения.

Основные параметры усилителя ДМВ диапазона:

  • Полоса частот 470-790 МГц,
  • Усиление - 30 дБ,
  • Коэффициент шума -3 дБ,
  • Входное и выходное сопротивления - 75 Ом,
  • Ток потребления - 12 мА.

Одной из особенностей данной схемы является подача напряжения питания на схему антенного усилителя по выходному кабелю, по которому осуществляется подача выходного сигнала от антенного усилителя к приемнику радиосигнала - УКВ-радиоприемника, например, приемника УКВ-радиостанции или телевизора.

Антенный усилитель представляет собой два транзисторных каскада, включенных по схеме с общим эмиттером. На входе антенного усилителя предусмотрен фильтр верхних частот 3-го порядка, ограничивающий диапазон рабочих частот снизу. Это увеличивает помехозащищенность антенного усилителя.

Радиоэлементы:

  • R1 = 150к, R2=1 к, R3=75к, R4=680;
  • С1=3.3, С10=10, С3=100, С4=6800, С5=100;
  • Т1,Т2 - КТ3101А-2, КТ3115А-2, КТ3132А-2.
  • Конденсаторы С1,С2 типа КД-1, остальные - КМ-5 или К10-17в.
  • L1 - ПЭВ-2 0,8 мм, 2,5 витка, диаметр намотки 4 мм.
  • L2 - ВЧ-дроссель, 25 мкГн.

На рис.3 (б) приведена схема подключения антенного усилителя к антенному гнезду ТВ-приемника (к селектору ДМВ-диапазона) и к дистанционному источнику питания 12 В. При этом, как видно из схемы, питание на схему подается через коаксиальный кабель, используемый и для передачи усиленного ДМВ-радиосигнала от антенного усилителя к приемнику - УКВ-радиоприемнику или к телевизору.

Радиоэлементы подключения, рис.3 (б):

  • С5=100;
  • L3 - ВЧ-дроссель, 100 мкГн.

Монтаж выполнен на двустороннем стеклотекстолите СФ-2 навесным способом, длина проводников и площадь контактных площадок - минимальные, необходимо предусмотреть тщательное экранирование устройства.

Налаживание усилителя сводится к установке токов коллекторов транзисторов и регулируются при помощи R1 и RЗ, Т1 - 3.5 мА, Т2 - 8 мА; форму АЧХ можно регулировать подбором С2 в пределах 3-10 пФ и изменением шага между витками L1.

Литература: Рудомедов Е.А., Рудометов В.Е - Электроника и шпионские страсти-3.

Усиление принимаемых радиосигналов в приемном устройстве осу­ществляется в его преселекторе, т.е. на радиочастоте, и после преоб­разователя частоты - на промежуточной частоте. Соответственно раз­личают усилители радиочастоты (УРЧ) и усилители промежуточной час­тоты (УПЧ). В этих усилителях, вместе с усилением должна обеспечивать­ся частотная избирательность приемника. Для этого усилители содер­жат резонансные цепи: одиночные колебательные контуры, фильтры на связанных контурах, различные типы фильтров сосредоточенной избирательности. Усилители радиочастоты с переменной настройкой обыч­но выполняют с избирательной системой, аналогичной примененной во входной цепи приемника, чаще всего это одноконтурные избирательные цепи.

В усилителях промежуточной частоты находят применение сложные типы избирательных систем, обладающие АЧХ близкими к прямоугольным, такие, как электромеханические фильтры (ЭМФ), кварцевые фильтры (КФ), фильтры на поверхностных (объемных) акустических волнах (ПАВ, ПОВ) и др.

В большинстве современных приемников используют однокаскадные УРЧ. Реже, при высоких требованиях к избирательности и коэф­фициенту шума, УРЧ могут содержать до трех каскадов.

К числу основных электрических характеристик усилителей отно­сятся:

1.Резонансный коэффициент усиления напряжения .

На сверхвысоких частотах (СВЧ) чаще применяют понятие коэффициента усиления по мощнос­ти
, где
- активная составляющая входной проводимости усилителя;
- активная составляющая проводимость нагрузки.

2.Частотная избирательность усилителя показывает относитель­ное уменьшение усиления при заданной расстройке
.

Иногда избирательность характеризуют коэффициентом прямоугольности, например,
.

3.Коэффициент шума определяет шумовые свойства усилителя.

4.Искажения сигнала в усилителе : амплитудно-частотные, фазо­вые, нелинейные.

5.Устойчивость работы усилителя определяется его способностью сохранять в процессе эксплуатации основные характеристики (обычно К о и АЧХ), а также отсутствие склонности к самовозбуждению.

На рис.1-3 приведены основные схемы УРЧ, а на рис.4 схе­ма УПЧ с фильтром сосредоточения избирательности (ФСИ) в виде электромеханического фильтра.

Рис.1. УРЧ на полевом транзисторе

Рис.2. УРЧ на биполярном транзисторе

Рис.3. УРЧ с индуктивной связью с избирательной системой

Рис.4. УПЧ с фильтром сосредоточенной избирательности

В усилителях радиочастоты и промежуточной частоты, в основном применяют два варианта включения усилительного прибора: с общим эмиттером (общим истоком) и каскодную схему включения транзисторов.

На рис.1 приведена схема усилителя на полевом транзисторе с общим истоком. В цепь стока включен колебательный контур L К С К . Контур настраивается конденсатором С К (может применяться для нас­тройки контура варикап или варикапная матрица).

В усилителе применено последовательное питание стока через фильтр R 3 C 3 . Напряжение смещения на затворе VT 1 определяется падением напряжения от тока истока на резисторе R 2 . Резистор R 1 является сопротивлением утечки транзистора VT 1 и служит для передачи напряжения смещения на затвор транзистора.

На рис. 2 приведена аналогичная схема УРЧ на биполярном тран­зисторе. Здесь применено двойное неполное включение контура с транзисторами VT1, VT2, что позволяет обеспечить необходимое шунти­рование контура со стороны выхода транзистора VT1 и со стороны вхо­да транзистора VT2. Напряжение питания на коллектор транзистора подано через фильтр R4C4 и часть витков катушки контура L К . Режим по постоянному току и температурная стабилизация обеспечивается с помощью резисторов R1,R2 и R3. Емкость С2 устраняет отрицательную обратную связь по переменному току.

На рис. 3 показана схема с трансформаторной связью контура с коллектором транзистора и автотрансформаторной связью со входом следующего каскада. Обычно, в этом случае, применяют, "удлиненную" настройку контура (см. лаб. работу №1).

На рис. 4 представлена схема каскада УПЧ с ФСИ, выполненного на микросхеме 265 УВЗ. Микросхема представляет собой каскодный усилитель ОЭ - ОБ.

Усилители промежуточной частоты обеспечивают основное усиление и селективность приемника по соседнему каналу. Их важной особенностью является то, что они работают на фиксированной промежуточ­ной частоте и имеют большое усиление, порядка
.

При использовании различных типов ФСИ, требуемое усиление УПЧ достигается применением широкополосных каскадов.

Общим для всех схем является двойное неполное включение из­бирательной системы. (Полное включение можно рассматривать как частный случай, когда коэффициенты трансформации m и n равны единице). Поэтому для анализа можно использовать одну обобщенную эквивален­тную схему замещения усилителя (см. рис.5).

Рис.5. Обобщенная эквивалентная схема резонансного усилителя

На схеме транзистор со стороны выхода заменен эквивалентным генератором тока с параметрами
,
и током
, а со стороны входа следующего каскада прово­димостью
,
. Резистор утечкиR4 (рис.1) или делитель
(рис.2) заменены проводимостью
(
или
).

Обычно сумму проводимостей
считают проводимостью нагрузкиG Н , т.е.

Анализ эквивалентной схемы позволяет получить все расчетные соотношения для определения характеристик каскада .

Так, комплексный коэффициент усиления каскада определяется выражением

, где -

эквивалентная резонансная проводимость контура;

Обобщенная расстройка контура.

Из данного соотношения легко определить модуль коэффициента

усиления

и резонансный коэффициент усиления каскада УРЧ

Резонансный коэффициент усиления достигает своего максималь­ного значения при одинаковом шунтировании контура со стороны выхо­да активного прибора и со стороны нагрузки (входа следующего каскада), т.е. когда

Приведенные соотношения позволяют получить уравнение резонан­сной кривой усилителя. Так, при малых расстройках,
. Откуда, полоса пропускания УРЧ по уровню 0,707 (- 3дБ) равна

Резонансный коэффициент усиления одноконтурного каскада УПЧ такой же, как и у одноконтурного УРЧ

Для УПЧ с двухконтурным полосовым фильтром резонансный коэф­фициент усиления каскада определяется выражением

где
- фактор связи между контурами, а - коэффициент связи между контурами.

Коэффициент усиления (по напряжению) УПЧ с любым ФСИ при сог­ласовании фильтра на входе и выходе может быть рассчитан по формуле

Здесь
,
- характеристические (волновые) сопротивления ФСИ по входу и выходу соответственно;

- коэффициент передачи фильтра в полосе прозрачности (пропускания).

В том случае, если известно затухание фильтра в полосе проз­рачности в децибелах, то

Коэффициенты включения m и n вычисляются из условия согласо­вания фильтра на входе и выходе

,
.

Резонансная характеристика каскада УПЧ с ФСИ полностью опреде­ляется кривой изменения коэффициента передачи ФСИ от частоты. Отдельные точки резонансной кривой ФСИ задаются в справочниках.

Коэффициент усиления избирательного усилителя не должен превышать величины коэффициента устойчивого усиления
. В общем случае,
можно оценить из выражения

Если в качестве усилительного элемента используется каскодная схема, то необходимо подставить соответствующие значения проводимостей для каскодной схемы например, для схемы ОЭ – ОБ

В случае использования полевых транзисторов активной составляющей проводимости можно пренебречь и

.

УРЧ представляют собой активные частотно-избирательные каскады приемников, работающих на фиксированной частоте или в диапазоне частот. Они применяются для обеспечения высокой чувствительности радиоприемных устройств за счет предварительного усиления сигнала и его частотной селекции.

Основные требования и качественные показатели

1. Резонансный коэффициент усиления по напряжению

Или по мощности,

где G вх, G н - активные составляющие проводимостей входа и нагрузки усилителя.

2. Частотная избирательность - главным образом по зеркальному каналу супергетеродинных приемников (
).

3. Коэффициент шума УРЧ , который в значительной мере определяет способность приемника воспроизводить полезную информацию при малых уровнях принимаемого сигнала. С точки зрения минимального уровня шумов достаточно, чтобы коэффициент усиления по мощности УРЧ был на уровне 10-100, поэтому требуемое число каскадов обычно не превышает двух.

4. Устойчивость , характеризует отсутствие самовозбуждение усилите­ля.

Кроме того УРЧ по своим показателям должны обеспечивать усиление сигналов в определенном динамическом диапазоне с искажениями, не превышающими заданного уровня.

Учитывая, что УРЧ работает в режиме усиления слабых сигналов, бу­дем считать усилительный прибор линейным активным 4-х полюсником.

Резонансный усилительный каскад умеренно высоких частот

В диапазоне умеренно высоких частот (f < 300 МГц) для описания свойств усилительных каскадов удобно использовать систему Y -параметров, в которой уравнение линейного 4-полюсника записывается в виде (5.1)

(5.1)

где , и,- напряжения и токи на входе и выходе 4-полюсника соответственно,

- параметры в режиме короткого замыкания по входу и выходу 4-полюсника.

Наиболее общая схема резонансного каскада может быть представлена в виде (Рис. 5.1).

На рисунке представлена схема резонансного усилителя, в которой к контуру L C частично подключены как выход транзистора VT 1 , так вход следующего каскада на транзисторе VT 2 . В обоих случаях применяется автотрансформаторная связь. Однако в таком усилителе указанные связи могут быть реализованы и другим известным способом, например, трансформаторным.

Элементы R 1 , R 2 , ,применяются для задания режима работыактивного элемента VT 1 по постоянному току. Необходимая фильтрация по питанию осуществляется фильтром R ф , C ф . Расчет этих элементов производится аналогично, как это делается для апериодических усилителей. Поэтому вопросы задания рабочей точки резонансных усилителей здесь не рассматриваются.

Независимо от типа связи усилительного прибора с резонансным контуром резонансный усилитель можно представить в виде следующей эквивалентной схемы (Рис. 5.2).

Из представленной эквивалентной схемы следует, что

(5.2)

При использовании двойной автотрансформаторной связи проводимость нагрузки может быть представлена как

, (5.3)

где,
.

Коэффициент усиления по напряжению можно получить, если использовать выражения (5.1) и (5.2). С учетом этих выражений можно получить

(5.4)

Из последнего выражения можно получить

(5.5)

Откуда получаем

, (5.6)

где - полная эквивалентнаяпроводимость контура.

Резонансные свойства каскада определяются частотной характеристикой проводимости
, а последняя соответствует резонансной характеристике колебательного контура LC . Эквивалентное сопротивление колеба­тельного контура, включенного в коллекторную цепь транзистора можно представить следующим образом

Полное эквивалентное сопротивление контура
можно представить

, (5.8)

где
-обобщенная расстройка контура.

Коэффициент усиления каскада на резонансной частоте можно представить как

, (5.9)

где
.

- коэффициент трансформации от выхода первого активного элемента до входа следующего.

С учетом этого для резонансного каскада получим следующее выраже­ние для коэффициента усиления

(5.10)

По структуре полученная формула соответствует формуле для опреде­ления коэффициента усиления апериодического каскада, только в качестве нагрузки в последнем используется резонансный контур.

Потребляемый ток - 46 мА. Напряжение в цепи смещения V bjas определяет уровень выходной мощности (коэффициент передачи) усилителя

Рис.33.11. Внутреннее строение и цоколевка микросхем TSH690, TSH691

Рис. 33.12. Типовая включения микросхем TSH690, TSH691 в качестве усилителя в полосе частот 300- 7000 МГц

и может регулироваться в пределах 0-5,5 (6,0) В. Коэффициент передачи микросхемы TSH690 (TSH691) при напряжении смещения V bias =2,7 В и сопротивлении нагрузки 50 Ом в полосе частот до 450 МГц составляет 23(43) дБ, до 900(950) МГц - 17(23) дБ.

Практическая включения микросхем TSH690, TSH691 приведена на рис. 33.12. Рекомендуемые номиналы элементов: С1=С5=100- 1000 пФ; С2=С4=1000 пФ; С3=0,01 мкФ; L1 150 нГн; L2 56 нГн для частот не свыше 450 МГц и 10 нГн для частот до 900 МГц. Резистором R1 можно регулировать уровень выходной мощности (можно использовать для системы автоматической регулировки выходной мощности).

Широкополосный INA50311 (рис. 33.13), производимый фирмой Hewlett Packard, предназначен для использования в аппаратуре подвижной связи, а также в бытовой радиоэлектронной аппаратуре, например, в качестве антенного усилителя или усилителя радиочастоты. Рабочий диапазон усилителя 50-2500 МГц. Напряжение питания - 5 В при потребляемом токе до 17 мА. Усредненный коэффициент усиления

Рис. 33.13. внутреннего строения микросхемы ΙΝΑ50311

10 дБ. Максимальная мощность сигнала, подводимого к входу на частоте 900 МГц, не более 10 мВт. Коэффициент шума 3,4 дБ.

Типовая включения микросхемы ΙΝΑ50311 при питании от стабилизатора напряжения 78LO05 приведена на рис. 33.14.

Рис. 33.14. широкополосного усилителя на микросхеме INA50311

Шустов М. А., Схемотехника. 500 устройств на аналоговых микросхемах. - СПб.: Наука и Техника, 2013. -352 с.

Добрый день уважаемый хабраюзер, я хочу рассказать тебе о основах построения усилителей звуковой частоты. Я думаю эта статья будет интересна тебе если ты никогда не занимался радиоэлектроникой, и конечно же она будет смешна тем кто не расстаётся с паяльником. И поэтому я попытаюсь расказать о данной теме как можно проще и к сожалению опуская некоторые нюансы.

Усилитель звуковой частоты или усилитель низкой частоты, что бы разобраться как он всё таки работает и зачем там так много всяких транзисторов, резисторов и конденсаторов, нужно понять как работает каждый элемент и попробовать узнать как эти элементы устроены. Для того что бы собрать примитивный усилитель нам понадобятся три вида электронных элементов: резисторы, конденсаторы и конечно транзисторы.

Резистор

Итак, резисторы у нас характеризуются сопротивлением электрическому току и это сопротивление измеряется в Омах. Каждый электропроводящий металл или сплав металлов имеют своё удельное сопротивление . Если мы возьмём проволоку определённой длинны с большим удельным сопротивлением, то у нас получится самый настоящий проволочный резистор. Для того что бы резистор был компактным, проволоку можно намотать на каркас. Таким образом у нас получится проволочный резистор, но он имеет ряд недостатков, поэтому резисторы обычно изготавливаются из металлокерамического материала. Вот так обозначаются резисторы на электрических схемах:

Верхний вариант обозначения принят в США, нижний в России и в Европе.

Конденсатор

Конденсатор представляет из себя две металлических пластины разделённые диэлектриком . Если мы подадим на эти пластины постоянное напряжение, то появится электрическое поле, которое после отключения питания будет поддерживать на пластинах положительный и отрицательный заряды соответственно.

Основа конструкции конденсатора - две токопроводящие обкладки, между которыми находится диэлектрик

Таким образом конденсатор способен накапливать электрический заряд. Эта способность накапливать электрический заряд называется электрическая ёмкость , что есть главный параметр конденсатора. Электрическая ёмкость измеряется в Фарадах. Что ещё характерно, это то что когда мы заряжаем или разряжаем конденсатор, через него идёт электрический ток. Но как только конденсатор зарядился, он перестаёт пропускать электрический ток, а это потому что конденсатор принял заряд источника питания, то есть потенциал конденсатора и источника питания одинаковые, а если нет разности потенциалов (напряжения), нет электрического тока. Таким образом, заряженный конденсатор не пропускает постоянный электрический ток, но пропускает переменный ток, так как при подключении его к переменному электрическому току, он будет постоянно заряжаться и разряжаться. На электрических схемах его обозначают так:

Транзистор

В нашем усилителе мы будем использовать самые простые биполярные транзисторы . Транзистор изготавливают из полупроводникового материала . Нужное для нас свойство это материала, - наличие в них свободных носителей как положительных, так и отрицательных зарядов. В зависимости от того каких зарядов больше, полупроводники различают на два типа по проводимости: n -тип и p -тип (n-negative, p-positive). Отрицательные заряды - это электроны, освободившиеся с внешних оболочек атомов кристаллической решетки, а положительные - так называемые дырки. Дырки - это вакантные места, остающиеся в электронных оболочках после ухода из них электронов. Условно обозначим атомы с электроном на на внешней орбите синим кружком со знаком минус, а атомы с вакантным местом - пустым кружком:


Каждый биполярный транзистор состоит из трёх зон таких полупроводников, эти зоны называют база, эмиттер и коллектор.


Рассмотрим пример работы транзистора. Для этого подключим к транзистору две батарейки на 1,5 и на 5 вольт, плюсом к эмиттеру, а минусом к базе и коллектору соответственно (смотрим рисунок):

На контакте базы и эмиттера появится электромагнитное поле, которое буквально вырывает электроны с внешней орбиты атомов базы и переносит их в эмиттер. Свободные электроны оставляют за собой дырки, и занимают вакантные места уже в эмиттере. Это же электромагнитное поле оказывает такое же воздействие на атомы коллектора, а так как база в транзисторе достаточно тонкая относительно эмиттера и коллектора, электроны коллектора достаточно легко проходят сквозь неё в эмиттер, причём в гораздо большем количестве чем из базы.

Если же мы отключим напряжение от базы, то никакого электромагнитного поля не будет, а база будет выполнять роль диэлектрика, и транзистор будет закрыт. Таким образом при подаче на базу достаточно малого напряжения, мы можем контролировать большее поданное напряжение на эмиттер и коллектор.

Рассмотренный нами транзистор pnp -типа, так как у него две p -зоны и одна n -зона. Так же существуют npn -транзисторы, принцип действия в них такой же, но электрический ток течёт в них в противоположную сторону, чем в рассмотренном нами транзисторе. Вот так биполярные транзисторы обозначаются на электрических схемах, стрелка указывает направление тока:

УНЧ

Ну что ж, попробуем спроектировать из этого всего усилитель низкой частоты. Для начала нам нужен сигнал который мы будем усиливать, это может быть звуковая карта компьютера или любое другое звуковое устройство с линейным выходом. Допустим наш сигнал с максимальной амплитудой примерно 0,5 вольта при токе 0,2 А, примерно такой:

А что бы заработал самый простой 4-х омный 10 ваттный динамик, нам нужно увеличить амплитуду сигнала до 6 вольт, при силе тока I = U / R = 6 / 4 = 1,5 A.

Итак, попробуем подключить наш сигнал к транзистору. Вспомните нашу схему с транзистором и двумя батарейками, теперь вместо 1,5 вольтовой батарейки у нас у нас сигнал линейного выхода. Резистор R1 выполняет роль нагрузки, дабы не было короткого замыкания и наш транзистор не сгорел.

Но тут возникают сразу две проблемы, во-первых наш транзистор npn -типа, и открывается только при положительном значении полуволны, а при отрицательном закрывается.

Во-вторых транзистор, как и любой полупроводниковый прибор имеет нелинейные характеристики в отношении напряжения и тока и чем меньше значения тока и напряжения тем сильнее эти искажения:

Мало того что от нашего сигнала осталась только полуволна, так она ещё и будет искажена:


Это есть так называемое искажение типа ступенька.

Чтобы избавиться от этих проблем, нам нужно сместить наш сигнал в рабочую зону транзистора, где поместится вся синусоида сигнала и нелинейные искажения будут незначительны. Для этого подают на базу напряжение смещения, допустим в 1 вольт, с помощью составленного из двух резисторов R2 и R3 делителя напряжения.

А наш сигнал входящий в транзистор будет выглядеть вот так:

Теперь нам нужно изъять наш полезный сигнал с коллектора транзистора. Для этого установим конденсатор C1:

Как мы помним конденсатор пропускает переменный ток и не пропускает постоянный, поэтому он нам будет служить фильтром пропускающим только наш полезный сигнал - нашу синусоиду. А постоянная составляющая не прошедшая через конденсатор будет рассеиваться на резисторе R1. Переменный же ток, наш полезный сигнал, будет стремиться пройти через конденсатор, так сопротивление конденсатора для него ничтожно мало по сравнению с резистором R1.

Вот и получился первый транзисторный каскад нашего усилителя. Но существуют ещё два маленьких нюанса:

Мы не знаем на 100% какой сигнал входит в усилитель, вдруг всё таки источник сигнала неисправен, всякое бывает, опять же статическое электричество или вместе с полезным сигналом проходит постоянное напряжение. Это может стать причиной не правильной работы транзистора или даже спровоцировать его поломку. Для этого установим конденсатор С2, он подобно конденсатору С1 будет блокировать постоянный электрический ток, а так же ограниченная ёмкость конденсатора не будет пропускать пики большой амплитуды, которые могут испортить транзистор. Такие скачки напряжения обычно происходят при включении или отключении устройства.

И второй нюанс, любому источнику сигнала требуется определённая конкретная нагрузка (сопротивление). По этому для нас важно входное сопротивление каскада. Для регулировки входного сопротивления добавим в цепь эмиттера резистор R4:

Теперь мы знаем назначение каждого резистора и конденсатора в транзисторном каскаде. Давайте теперь попробуем рассчитать какие номиналы элементов нужно использовать для него.

Исходные данные:

  • U = 12 В - напряжение питания;
  • U бэ ~ 1 В - Напряжение эмиттер-база рабочей точки транзистора;
Выбираем транзистор, для нас подойдёт npn -транзистор 2N2712
  • P max = 200 мВт - максимальная рассеиваемая мощность;
  • I max = 100 мА - максимальный постоянный ток коллектора;
  • U max = 18 В - макcимально допустимое напряжение коллектор-база / коллектор-эмиттер (У нас напряжение питания 12 В, так что хватает с запасом);
  • U эб = 5 В - макcимально допустимое напряжение эмиттер-база (наше напряжение 1 вольт ± 0,5 вольта);
  • h21 = 75-225 - коэффициент усиления тока базы, принимается минимальное значение - 75;
  1. Рассчитываем максимальную статическую мощность транзистора, её берут на 20% меньше максимальной рассеиваемой мощности, дабы наш транзистор не работал на пределе своих возможностей:

    P ст.max = 0,8*P max = 0,8 * 200мВт = 160 мВт;

  2. Определим ток коллектора в статическом режиме (без сигнала), не смотря на что на базу не подаётся напряжение через транзистор всё равно в малой степени протекает электрический ток.

    I к0 = P ст.max / U кэ , где U кэ - напряжение перехода коллектор-эмиттер. На транзисторе рассеивается половина напряжения питания, вторая половина будет рассеиваться на резисторах:

    U кэ = U / 2;

    I к0 = P ст.max / (U / 2) = 160 мВт / (12В / 2) = 26,7 mA;

  3. Теперь рассчитаем сопротивление нагрузки, изначально у нас был один резистор R1, который выполнял эту роль, но так как мы добавили резистор R4 для увеличения входного сопротивления каскада, теперь сопротивление нагрузки будет складываться из R1 и R4:

    R н = R1 + R4 , где R н - общее сопротивление нагрузки;

    Отношение между R1 и R4 обычно принимается 1 к 10:

    R1 = R4 *10;

    Рассчитаем сопротивление нагрузки:

    R1 + R4 = (U / 2) / I к0 = (12В / 2) / 26,7 mA = (12В / 2) / 0,0267 А = 224,7 Ом;

    Ближайшие номиналы резисторов это 200 и 27 Ом. R1 = 200 Ом, а R4 = 27 Ом.

  4. Теперь найдем напряжение на коллекторе транзистора без сигнала:

    U к0 = (U кэ0 + I к0 * R4 ) = (U - I к0 * R1 ) = (12В -0,0267 А * 200 Ом) = 6,7 В;

  5. Ток базы управления транзистором:

    I б = I к / h21 , где I к - ток коллектора;

    I к = (U / R н );

    I б = (U / R н ) / h21 = (12В / (200 Ом + 27 Ом)) / 75 = 0,0007 А = 0,07 mA;

  6. Полный ток базы определяется напряжением смещения на базе, которое устанавливается делителем R2 и R3 . Ток задаваемый делителем должен быть в 5-10 раз больше тока управления базы (I б ), что бы собственно ток управления базы не влиял на напряжение смещения. Таким образом для значения тока делителя (I дел ) принимаем 0,7 mA и рассчитываем R2 и R3 :

    R2 + R3 = U / I дел = 12В / 0,007 = 1714,3 Ом

  7. Теперь рассчитаем напряжение на эмиттере в состоянии покоя транзистора (U э ):

    U э = I к0 * R4 = 0,0267 А * 27 Ом = 0,72 В

    Да, I к0 ток покоя коллектора, но этот же ток проходит и через эмиттер, так что I к0 считают током покоя всего транзистора.

  8. Рассчитываем полное напряжение на базе (U б ) с учётом напряжения смещения (U см = 1В):

    U б = U э + U см = 0,72 + 1 = 1,72 В

    Теперь с помощью формулы делителя напряжения находим значения резисторов R2 и R3 :

    R3 = (R2 + R3 ) * U б / U = 1714,3 Ом * 1,72 В / 12 В = 245,7 Ом;

    Ближайший номинал резистора 250 Ом;

    R2 = (R2 + R3 ) - R3 = 1714,3 Ом - 250 Ом = 1464,3 Ом;

    Номинал резистора выбираем в сторону уменьшения, ближайший R2 = 1,3 кОм.

  9. Конденсаторы С1 и С2 обычно устанавливают не менее 5 мкФ. Ёмкость выбирается такой что бы конденсатор не успевал перезаряжаться.

Заключение

На выходе каскада мы получаем пропорционально усиленный сигнал и по току и по напряжению, то есть по мощности. Но одного каскада нам не хватит для требуемого усиления, так что придётся добавлять следующий и следующий… И так далее.

Рассмотренный расчёт довольно поверхностный и такая схема усиления конечно же не используется в строении усилителей, мы не должны забывать о диапазоне пропускаемых частот, искажениях и многом другом.



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама