THE BELL

There are those who read this news before you.
Subscribe to receive fresh articles.
Email
Name
Surname
How do you want to read The Bell?
No spam
It is known that during the operation of batteries, their plates can become sulfated, which leads to battery failure. If you charge with a pulsed asymmetric current, then it is possible to restore such batteries and extend their service life, while the charge and discharge currents should be set to 10: 1. I have made a charger that can operate in 2 modes. The first mode provides normal charging of batteries with a direct current of up to 10 A. The amount of charging current is set by thyristor regulators. The second mode (Vk 1 is off, Vk 2 is on) provides a pulsed charge current of 5A and a discharge current of 0.5A.

Let's consider the operation of the circuit (Fig. 1) in the first mode. An alternating voltage of 220 V is supplied to the step-down transformer Tr1. In the secondary winding, two voltages of 24 V are generated relative to the midpoint. We managed to find a transformer with a midpoint in the secondary winding, which makes it possible to reduce the number of diodes in the rectifiers, create a power reserve and ease the thermal regime. The alternating voltage from the secondary winding of the transformer is supplied to a rectifier using diodes D6, D7. The plus from the middle point of the transformer goes to resistor R8, which limits the current of the zener diode D1. Zener diode D1 determines the operating voltage of the circuit. A thyristor control generator is assembled on transistors T1 and T2. Capacitor C1 is infected through the circuit: power supply plus, variable resistor R3, R1, C1, minus. The charging rate of capacitor C1 is controlled by variable resistor R3. Capacitor C1 is discharged along the circuit: emitter - collector T1, base - emitter T2, R4 capacitor mine. Transistors T1 and T2 open and a positive pulse from the emitter T2 through the limiting resistor R7 and decoupling diodes D4 - D5 arrives at the control electrodes of the thyristors. In this case, switch Vk 1 is turned on, Vk 2 is turned off. The thyristors, depending on the minus phase of the alternating voltage, open one by one, and the minus of each half-cycle goes to the minus of the battery. Plus from the midpoint of the transformer through the ammeter to the plus of the battery. Resistors R5 and R6 determine the operating mode of transistors T1-2. R4 is the load of the T2 emitter on which a positive control pulse is released. R2 - for more stable operation of the circuit (in some cases it can be neglected).

Operation of the memory circuit in the second mode (Vk1 – off; Vk2 – on). When Vk1 is turned off, the control circuit of thyristor D3 is interrupted, while it remains permanently closed. One thyristor D2 remains in operation, which rectifies only one half-cycle and produces a charge pulse during one half-cycle. During the idle second half-cycle, the battery is discharged through the switched on Vk2. The load is an incandescent light bulb 24V x 24 W or 26V x 24 W (when the voltage on it is 12V, it consumes a current of 0.5 A). The light bulb is placed outside the housing so as not to heat the structure. The charging current value is set by regulator R3 using an ammeter. Considering that when charging the battery, part of the current flows through load L1 (10%). Then the ammeter reading should correspond to 1.8A (for a pulse charging current of 5A). since the ammeter has an inertia and shows the average value of the current over a period of time, and the charge is made during half the period.


Details and design of the charger. Any transformer with a power of at least 150 W and a voltage in the secondary winding of 22 - 25 V is suitable. If you use a transformer without a midpoint in the secondary winding, then all elements of the second half-cycle must be excluded from the circuit. (Bk1, D5, D3). The circuit will be fully operational in both modes, only in the first it will work on one half-cycle. Thyristors can be used KU202 for a voltage of at least 60V. They can be installed on a radiator without isolation from each other. Any D4-7 diodes for an operating voltage of at least 60V. Transistors can be replaced with germanium low-frequency transistors with appropriate conductivity. works on any pairs of transistors: P40 – P9; MP39 – MP38; KT814 – KT815, etc. Zener diode D1 is any 12–14V. You can connect two in series to set the desired voltage. As an ammeter, I used the head of a 10 mA, 10 division miliammeter. The shunt was selected experimentally, wound with 1.2 mm wire without a frame to a diameter of 8 mm, 36 turns.


Setting up the charger. If assembled correctly, it works immediately. Sometimes it is necessary to set the Min - Max regulation limits. selection of C1, usually in the direction of increase. If there are regulation failures, select R3. Usually I connected a powerful light bulb from an overhead projector 24V x 300W as a load for adjustment. It is advisable to install a 10A fuse in the open circuit of the battery charge.

Discuss the article BATTERY CHARGER

In order for a car to start, it needs energy. This energy is taken from the battery. As a rule, it is recharged from the generator while the engine is running. When the car is not used for a long time or the battery is faulty, it discharges to such a state that that the car can no longer start. In this case, external charging is required. You can buy such a device or assemble it yourself, but for this you will need a charger circuit.

The principle of operation of a car battery

A car battery supplies power to various devices in the car when the engine is turned off and is designed to start it. By type of execution, a lead-acid battery is used. Structurally, it is assembled from six batteries with a nominal voltage of 2.2 volts, connected in series. Each element is a set of lattice plates made of lead. The plates are coated with active material and immersed in an electrolyte.

The electrolyte solution contains distilled water and sulfuric acid. The frost resistance of the battery depends on the density of the electrolyte. Recently, technologies have emerged that allow the electrolyte to be adsorbed in glass fiber or thickened using silica gel to a gel-like state.

Each plate has a negative and positive pole, and they are isolated from each other using a plastic separator. The body of the product is made of propylene, which is not destroyed by acid and serves as a dielectric. The positive pole of the electrode is coated with lead dioxide, and the negative with sponge lead. Recently, rechargeable batteries with electrodes made of lead-calcium alloy have begun to be produced. These batteries are completely sealed and require no maintenance.

When a load is connected to the battery, the active material on the plates reacts chemically with the electrolyte solution and produces an electric current. The electrolyte depletes over time due to the deposition of lead sulfate on the plates. The battery begins to lose charge. During the charging process, a chemical reaction occurs in the reverse order, lead sulfate and water are converted, the density of the electrolyte increases and the charge is restored.

Batteries are characterized by their self-discharge value. It occurs in the battery when it is inactive. The main reason is contamination of the battery surface and poor quality of the distiller. The rate of self-discharge accelerates when the lead plates are destroyed.

Types of chargers

A large number of car charger circuits have been developed using different element bases and fundamental approaches. According to the principle of operation, charging devices are divided into two groups:

  1. Starting chargers, designed to start the engine when the battery is not working. By briefly supplying a large current to the battery terminals, the starter is turned on and the engine starts, and then the battery is charged from the car's generator. They are produced only for a certain current value or with the ability to set its value.
  2. Pre-start chargers, leads from the device are connected to the battery terminals and current is supplied for a long time. Its value does not exceed ten amperes, during which time the battery energy is restored. In turn, they are divided into: gradual (charging time from 14 to 24 hours), accelerated (up to three hours) and conditioning (about an hour).

Based on their circuit design, pulse and transformer devices are distinguished. The first type uses a high-frequency signal converter and is characterized by small size and weight. The second type uses a transformer with a rectifier unit as a basis; it is easy to manufacture, but have a lot of weight and low efficiency (efficiency).

Whether you made a charger for car batteries yourself or purchased it at a retail outlet, the requirements for it are the same, namely:

  • output voltage stability;
  • high efficiency value;
  • short circuit protection;
  • charge control indicator.

One of the main characteristics of the charger is the amount of current that charges the battery. Correctly charging the battery and extending its performance characteristics can only be achieved by selecting the desired value. The charging speed is also important. The higher the current, the higher the speed, but a high speed value leads to rapid degradation of the battery. It is believed that the correct current value will be a value equal to ten percent of the battery capacity. Capacity is defined as the amount of current supplied by the battery per unit of time; it is measured in ampere-hours.

Homemade charger

Every car enthusiast should have a charging device, so if there is no opportunity or desire to purchase a ready-made device, there is nothing left to do but charge the battery yourself. It is easy to make with your own hands both the simplest and multifunctional devices. For this you will need a diagram and a set of radioelements. It is also possible to convert an uninterruptible power supply (UPS) or computer unit (AT) into a device for recharging the battery.

Transformer charger

This device is the easiest to assemble and does not contain scarce parts. The circuit consists of three nodes:

  • transformer;
  • rectifier block;
  • regulator

Voltage from the industrial network is supplied to the primary winding of the transformer. The transformer itself can be used of any type. It consists of two parts: the core and the windings. The core is assembled from steel or ferrite, the windings are made from conductor material.

The operating principle of the transformer is based on the appearance of an alternating magnetic field when current passes through the primary winding and transfers it to the secondary. To obtain the required voltage level at the output, the number of turns in the secondary winding is made smaller compared to the primary. The voltage level on the secondary winding of the transformer is selected to be 19 volts, and its power should provide a threefold reserve of charging current.

From the transformer, the reduced voltage passes through the rectifier bridge and goes to a rheostat connected in series to the battery. The rheostat is designed to regulate the voltage and current by changing the resistance. The rheostat resistance does not exceed 10 Ohms. The amount of current is controlled by an ammeter connected in series in front of the battery. With this circuit it will not be possible to charge a battery with a capacity of more than 50 Ah, since the rheostat begins to overheat.

You can simplify the circuit by removing the rheostat, and install a set of capacitors at the input in front of the transformer, which are used as reactance to reduce the network voltage. The lower the nominal value of the capacitance, the less voltage is supplied to the primary winding in the network.

The peculiarity of such a circuit is that it is necessary to ensure a signal level on the secondary winding of the transformer that is one and a half times greater than the operating voltage of the load. This circuit can be used without a transformer, but it is very dangerous. Without galvanic isolation, you can get an electric shock.

Pulse charger

The advantage of pulsed devices is their high efficiency and compact size. The device is based on a pulse-width modulation (PWM) chip. You can assemble a powerful pulse charger with your own hands according to the following scheme.

The IR2153 driver is used as a PWM controller. After the rectifier diodes, a polar capacitor C1 with a capacity in the range of 47–470 μF and a voltage of at least 350 volts is placed in parallel with the battery. The capacitor removes mains voltage surges and line noise. The diode bridge is used with a rated current of more than four amperes and with a reverse voltage of at least 400 volts. The driver controls powerful N-channel field-effect transistors IRFI840GLC installed on radiators. The current of such charging will be up to 50 amperes, and the output power will be up to 600 watts.

You can make a pulse charger for a car with your own hands using a converted AT format computer power supply. They use the common TL494 microcircuit as a PWM controller. The modification itself consists of increasing the output signal to 14 volts. To do this, you will need to correctly install the trimmer resistor.

The resistor that connects the first leg of the TL494 to the stabilized + 5 V bus is removed, and instead of the second one, connected to the 12 volt bus, a variable resistor with a nominal value of 68 kOhm is soldered in. This resistor sets the required output voltage level. The power supply is turned on via a mechanical switch, according to the diagram indicated on the power supply housing.

Device on LM317 chip

A fairly simple but stable charging circuit is easily implemented on the LM317 integrated circuit. The microcircuit provides a signal level of 13.6 volts with a maximum current of 3 amperes. The LM317 stabilizer is equipped with built-in short circuit protection.

Voltage is supplied to the device circuit through the terminals from an independent DC power supply of 13-20 volts. The current, passing through the indicator LED HL1 and transistor VT1, is supplied to the stabilizer LM317. From its output directly to the battery via X3, X4. The divider assembled on R3 and R4 sets the required voltage value for opening VT1. Variable resistor R4 sets the charging current limit, and R5 sets the output signal level. The output voltage is adjustable from 13.6 to 14 volts.

The circuit can be simplified as much as possible, but its reliability will decrease.

In it, resistor R2 selects the current. A powerful nichrome wire element is used as a resistor. When the battery is discharged, the charging current is maximum, the VD2 LED lights up brightly; as the battery charges, the current begins to decrease and the LED dims.

Charger from an uninterruptible power supply

You can construct a charger from a conventional uninterruptible power supply even if the electronics unit is faulty. To do this, all electronics are removed from the unit, except for the transformer. A rectifier circuit, current stabilization and voltage limiting are added to the high-voltage winding of the 220 V transformer.

The rectifier is assembled using any powerful diodes, for example, domestic D-242 and a network capacitor of 2200 uF for 35-50 volts. The output will be a signal with a voltage of 18-19 volts. An LT1083 or LM317 microcircuit is used as a voltage stabilizer and must be installed on a radiator.

By connecting the battery, the voltage is set to 14.2 volts. It is convenient to control the signal level using a voltmeter and ammeter. The voltmeter is connected in parallel to the battery terminals, and the ammeter in series. As the battery charges, its resistance will increase and the current will decrease. It’s even easier to make the regulator using a triac connected to the primary winding of the transformer like a dimmer.

When making a device yourself, you should remember about electrical safety when working with a 220 V AC network. As a rule, a correctly made charging device made from serviceable parts starts working immediately, you just need to set the charging current.

The device with electronic control of the charging current is made on the basis of a thyristor phase-pulse power regulator. It does not contain scarce parts, and if the elements are known to be good, it does not require adjustment.

The charger allows you to charge car batteries with a current from 0 to 10 A, and can also serve as a regulated power source for a powerful low-voltage soldering iron, vulcanizer, or portable lamp. The charging current is similar in shape to pulse current, which is believed to help extend battery life. The device is operational at ambient temperatures from - 35 °C to + 35 °C.

The device diagram is shown in Fig. 2.60.

The charger is a thyristor power regulator with phase-pulse control, powered from winding II of the step-down transformer T1 through the moctVDI + VD4 diode.

The thyristor control unit is made on an analogue of the unijunction transistor VT1, VT2. The time during which capacitor C2 is charged before switching the unijunction transistor can be adjusted with a variable resistor R1. When the engine is in the extreme right position according to the diagram, the charging current will be maximum, and vice versa.

Diode VD5 protects the control circuit of thyristor VS1 from reverse voltage that occurs when the thyristor is turned on.


The charger can later be supplemented with various automatic components (switching off at the end of charging, maintaining normal battery voltage during long-term storage, signaling the correct polarity of the battery connection, protection against output short circuits, etc.).

The disadvantages of the device include fluctuations in the charging current when the voltage of the electric lighting network is unstable.

Like all similar thyristor phase-pulse regulators, the device interferes with radio reception. To combat them, you should provide an LC network filter, similar to that used in switching network power supplies.

Capacitor C2 - K73-11, with a capacity of 0.47 to 1 µF, or. K73-16, K73-17, K42U-2, MBGP.

We will replace the KT361A transistor with KT361B - KT361Ё, KT3107L, KT502V, KT502G, KT501Zh - KT50IK, and KT315L with KT315B + KT315D KT312B, KT3102L, KT503V + KT503G, P307 Instead 05B suitable diodes KD105V, KD105G or. D226 with any letter index.

Variable resistor R1 - SP-1, SPZ-30a or SPO-1.

Ammeter PA1 - any direct current with a scale of 10 A. It can be made independently from any milliammeter by selecting a shunt based on a standard ammeter.

Fuse F1 is a fuse, but it is convenient to use a 10 A circuit breaker or a car bimetallic fuse for the same current.

Diodes VD1 + VP4 can be any for a forward current of 10 A and a reverse voltage of at least 50 V (series D242, D243, D245, KD203, KD210, KD213).

The rectifier diodes and thyristor are installed on heat sinks, each with a useful area of ​​about 100 cm2. To improve the thermal contact of devices with heat sinks, it is advisable to use thermally conductive pastes.

Instead of a thyristor. KU202V will fit KU202G - KU202E; It has been verified in practice that the device works normally with more powerful thyristors T-160, T-250.

It should be noted that it is permissible to use the metal casing wall directly as a heat sink for the thyristor. Then, however, there will be a negative terminal of the device on the case, which is generally undesirable due to the danger of accidental short circuits of the positive output wire to the case. If you mount the thyristor through a mica gasket, there will be no danger of a short circuit, but the heat transfer from it will worsen.

The device can use a ready-made network step-down transformer of the required power with a secondary winding voltage of 18 to 22 V.

If the transformer has a voltage on the secondary winding of more than 18 V, resistor R5 should be replaced with another one of higher resistance (for example, at 24...26 V, the resistor resistance should be increased to 200 Ohms).

In the case when the secondary winding of the transformer is tapped from the middle, or there are two identical windings and the voltage of each is within the specified limits, then it is better to make the rectifier according to a standard full-wave circuit using two diodes.

When the secondary winding voltage is 28...36 V, you can completely abandon the rectifier - its role will simultaneously be played by thyristor VS1 (rectification is half-wave). For this version of the power supply, it is necessary to connect a separating diode KD105B or D226 with any letter index (cathode to resistor R5) between resistor R5 and the positive wire. The choice of thyristor in such a circuit will be limited - only those that allow operation under reverse voltage (for example, KU202E) are suitable.

For the described device, a unified transformer TN-61 is suitable. Its three secondary windings must be connected in series, and they are capable of delivering current up to 8 A.

All parts of the device, except for transformer T1, rectifier diodes VD1 - VD4, variable resistor R1, fuse FU1 and thyristor VS1, are mounted on a printed circuit board made of foil fiberglass 1.5 mm thick.

Leave your comment on this article:

Name:

Email (optional):

Often car owners have to deal with the phenomenon of the inability to start the engine due to a low battery. To solve the problem, you will need to use a battery charger, which costs a lot of money. In order not to spend money on buying a new charger for a car battery, you can make it yourself. It is only important to find a transformer with the necessary characteristics. To make a homemade device, you don’t have to be an electrician, and the whole process will take no more than a few hours.

Features of battery operation

Not all drivers know that lead-acid batteries are used in cars. Such batteries are distinguished by their endurance, so they can last up to 5 years.

To charge lead-acid batteries, a current equal to 10% of the total battery capacity is used. This means that to charge a battery with a capacity of 55 A/h, a charging current of 5.5 A is required. If a very high current is applied, this can lead to boiling of the electrolyte, which, in turn, will lead to a decrease in service life devices. A small charging current does not extend the life of the battery, but it does not have a negative impact on the integrity of the device.

This is interesting! When a current of 25 A is supplied, the battery is quickly recharged, so within 5-10 minutes after connecting a charger with this rating, you can start the engine. Such a high current is produced by modern inverter chargers, but it negatively affects the battery life.

When charging the battery, the charging current flows back to the working one. The voltage for each can should not be higher than 2.7 V. A 12 V battery has 6 cans that are not connected to each other. Depending on the battery voltage, the number of cells differs, as well as the required voltage for each cell. If the voltage is higher, this will lead to a process of decomposition of the electrolyte and plates, which contributes to the failure of the battery. To prevent the electrolyte from boiling, the voltage is limited to 0.1 V.

The battery is considered discharged if, when connecting a voltmeter or multimeter, the devices show a voltage of 11.9-12.1 V. Such a battery should be recharged immediately. A charged battery has a voltage at the terminals of 12.5-12.7 V.

Example of voltage at the terminals of a charged battery

The charging process is the restoration of spent capacity. Charging batteries can be done in two ways:

  1. D.C. In this case, the charging current is regulated, the value of which is 10% of the device capacity. Charging time is 10 hours. The charging voltage varies from 13.8 V to 12.8 V for the entire charging duration. The disadvantage of this method is that it is necessary to control the charging process and turn off the charger in time before the electrolyte boils. This method is gentle on the batteries and has a neutral effect on their service life. To implement this method, transformer chargers are used.
  2. Constant pressure. In this case, a voltage of 14.4 V is supplied to the battery terminals, and the current changes from higher to lower values ​​automatically. Moreover, this change in current depends on such a parameter as time. The longer the battery is charged, the lower the current becomes. The battery will not be able to be recharged unless you forget to turn off the device and leave it for several days. The advantage of this method is that after 5-7 hours the battery will be charged by 90-95%. The battery can also be left unattended, which is why this method is popular. However, few car owners know that this charging method is “emergency”. When using it, the service life of the battery is significantly reduced. In addition, the more often you charge in this way, the faster the device will discharge.

Now even an inexperienced driver can understand that if there is no need to rush into charging the battery, then it is better to give preference to the first option (in terms of current). With accelerated charge recovery, the service life of the device is reduced, so there is a high probability that you will need to buy a new battery in the near future. Based on the above, the material will consider options for manufacturing chargers based on current and voltage. For production, you can use any available devices, which we will discuss later.

Battery charging requirements

Before carrying out the procedure for making a homemade battery charger, you must pay attention to the following requirements:

  1. Providing a stable voltage of 14.4 V.
  2. Device autonomy. This means that a homemade device should not require supervision, since the battery is often charged at night.
  3. Ensuring that the charger turns off when the charging current or voltage increases.
  4. Reverse polarity protection. If the device is connected to the battery incorrectly, the protection should be triggered. For implementation, a fuse is included in the circuit.

Polarity reversal is a dangerous process, as a result of which the battery may explode or boil. If the battery is in good condition and only slightly discharged, then if the charger is connected incorrectly, the charging current will increase above the rated one. If the battery is discharged, then when the polarity is reversed, an increase in voltage above the set value is observed and, as a result, the electrolyte boils.

Options for homemade battery chargers

Before you start developing a battery charger, it is important to understand that such a device is homemade and can negatively affect the battery life. However, sometimes such devices are simply necessary, as they can significantly save money on purchasing factory-made devices. Let's look at what you can make your own battery chargers from and how to do it.

Charging from a light bulb and a semiconductor diode

This charging method is relevant in situations where you need to start a car on a dead battery at home. In order to do this, you will need the components to assemble the device and a 220 V alternating voltage source (socket). The circuit of a homemade charger for a car battery contains the following elements:

  1. Incandescent lamp. An ordinary light bulb, which is also popularly referred to as “Ilyich’s lamp.” The power of the lamp affects the charging speed of the battery, so the higher this indicator, the faster you can start the engine. The best option is a lamp with a power of 100-150 W.
  2. Semiconductor diode. An electronic element whose main purpose is to conduct current in only one direction. The need for this element in the charging design is to convert alternating voltage to direct voltage. Moreover, for such purposes you will need a powerful diode that can withstand a heavy load. You can use a diode, either domestic or imported. In order not to buy such a diode, it can be found in old receivers or power supplies.
  3. Plug for connecting to a socket.
  4. Wires with terminals (crocodiles) for connecting to the battery.

It is important! Before assembling such a circuit, you need to understand that there is always a risk to life, so you should be extremely careful and cautious.

Connection diagram of a charger from a light bulb and a diode to a battery

The plug should be plugged into the socket only after the entire circuit has been assembled and the contacts have been insulated. To avoid the occurrence of short circuit current, a 10 A circuit breaker is included in the circuit. When assembling the circuit, it is important to take into account the polarity. The light bulb and semiconductor diode must be connected to the positive terminal circuit of the battery. When using a 100 W light bulb, a charging current of 0.17 A will flow to the battery. To charge a 2 A battery, you will need to charge it for 10 hours. The higher the power of the incandescent lamp, the higher the charging current.

It makes no sense to charge a completely dead battery with such a device, but recharging it in the absence of a factory charger is quite possible.

Battery charger from rectifier

This option also falls into the category of the simplest homemade chargers. The basis of such a charger includes two main elements - a voltage converter and a rectifier. There are three types of rectifiers that charge the device in the following ways:

  • D.C;
  • alternating current;
  • asymmetrical current.

Rectifiers of the first option charge the battery exclusively with direct current, which is cleared of alternating voltage ripples. AC rectifiers apply pulsating AC voltage to the battery terminals. Asymmetric rectifiers have a positive component, and half-wave rectifiers are used as the main design elements. This scheme has better results compared to DC and AC rectifiers. It is its design that will be discussed further.

In order to assemble a high-quality battery charging device, you will need a rectifier and a current amplifier. The rectifier consists of the following elements:

  • fuse;
  • powerful diode;
  • Zener diode 1N754A or D814A;
  • switch;
  • variable resistor.

Electrical circuit of an asymmetric rectifier

In order to assemble the circuit, you will need to use a fuse rated for a maximum current of 1 A. The transformer can be taken from an old TV, the power of which should not exceed 150 W, and the output voltage should be 21 V. As a resistor, you need to take a powerful element of the MLT- brand 2. The rectifier diode must be designed for a current of at least 5 A, so the best option is models like D305 or D243. The amplifier is based on a regulator based on two transistors of the KT825 and 818 series. During installation, the transistors are installed on radiators to improve cooling.

The assembly of such a circuit is carried out using a hinged method, that is, all the elements are located on the old board cleared of tracks and connected to each other using wires. Its advantage is the ability to adjust the output current for charging the battery. The disadvantage of the diagram is the need to find the necessary elements, as well as arrange them correctly.

The simplest analogue of the above diagram is a more simplified version, shown in the photo below.

Simplified circuit of a rectifier with a transformer

It is proposed to use a simplified circuit using a transformer and rectifier. In addition, you will need a 12 V and 40 W (car) light bulb. Assembling the circuit is not difficult even for a beginner, but it is important to pay attention to the fact that the rectifier diode and the light bulb must be located in the circuit that is fed to the negative terminal of the battery. The disadvantage of this scheme is that it produces a pulsating current. To smooth out pulsations, as well as reduce strong beats, it is recommended to use the circuit presented below.

A circuit with a diode bridge and a smoothing capacitor reduces ripple and reduces runout

Charger from a computer power supply: step-by-step instructions

Recently, a car charging option that you can make yourself using a computer power supply has become popular.

Initially you will need a working power supply. Even a unit with a power of 200 W is suitable for such purposes. It produces a voltage of 12 V. It will not be enough to charge the battery, so it is important to increase this value to 14.4 V. Step-by-step instructions for making a battery charger from a computer power supply are as follows:

  1. Initially, all excess wires that come out of the power supply are soldered off. You only need to leave the green wire. Its end needs to be soldered to the negative contacts, where the black wires come from. This manipulation is done so that when the unit is connected to the network, the device starts up immediately.

    The end of the green wire must be soldered to the negative contacts where the black wires were located

  2. The wires that will be connected to the battery terminals must be soldered to the minus and plus output contacts of the power supply. The plus is soldered to the exit point of the yellow wires, and the minus to the exit point of the black ones.
  3. At the next stage, it is necessary to reconstruct the operating mode of pulse width modulation (PWM). The TL494 or TA7500 microcontroller is responsible for this. For reconstruction you will need the lower leftmost leg of the microcontroller. To get to it, you need to turn the board over.

    The TL494 microcontroller is responsible for the PWM operating mode.

  4. Three resistors are connected to the bottom pin of the microcontroller. We are interested in the resistor that is connected to the output of the 12 V block. It is marked in the photo below with a dot. This element should be unsoldered, and then measure the resistance value.

    The resistor indicated by the purple dot must be desoldered

  5. The resistor has a resistance of about 40 kOhm. It must be replaced with a resistor with a different resistance value. To clarify the value of the required resistance, you must first solder a regulator (variable resistor) to the contacts of the remote resistor.

    A regulator is soldered in place of the removed resistor

  6. Now you should connect the device to the network, having previously connected a multimeter to the output terminals. The output voltage is changed using a regulator. You need to get a voltage value of 14.4 V.

    Output voltage is regulated by variable resistor

  7. As soon as the voltage value is reached, the variable resistor should be unsoldered, and then the resulting resistance should be measured. For the example described above, its value is 120.8 kOhm.

    The resulting resistance should be 120.8 kOhm

  8. Based on the obtained resistance value, you should select a similar resistor, and then solder it in place of the old one. If you cannot find a resistor of this resistance value, then you can select it from two elements.

    Soldering resistors in series adds up their resistance

  9. After this, the functionality of the device is checked. If desired, you can install a voltmeter (or an ammeter) to the power supply, which will allow you to monitor the voltage and charging current.

General view of the charger from the computer power supply

This is interesting! The assembled charger has the function of protection against short circuit current, as well as against overload, but it does not protect against polarity reversal, so you should solder the output wires of the appropriate color (red and black) so as not to mix them up.

When connecting the charger to the battery terminals, a current of about 5-6 A will be supplied, which is the optimal value for devices with a capacity of 55-60 A/h. The video below shows how to make a charger for a battery from a computer power supply with voltage and current regulators.

What other charger options are there for batteries?

Let's consider a few more options for independent battery chargers.

Using a laptop charger for the battery

One of the simplest and fastest ways to revive a dead battery. To implement the scheme for reviving the battery using charging from a laptop, you will need:

  1. Charger for any laptop. The charger parameters are 19 V and the current is about 5 A.
  2. Halogen lamp with a power of 90 W.
  3. Connecting wires with clamps.

Let's move on to the implementation of the scheme. The light bulb is used to limit the current to an optimal value. You can use a resistor instead of a light bulb.

A laptop charger can also be used to “revive” a car battery.

Assembling such a scheme is not difficult. If you do not plan to use the laptop charger for its intended purpose, you can cut off the plug and then connect the clamps to the wires. First, use a multimeter to determine the polarity. The light bulb is connected to a circuit that goes to the positive terminal of the battery. The negative terminal from the battery is connected directly. Only after connecting the device to the battery can voltage be supplied to the power supply.

DIY charger from a microwave oven or similar devices

Using the transformer block, which is located inside the microwave, you can make a charger for the battery.

Step-by-step instructions for making a homemade charger from a transformer block from a microwave are presented below.


Connection diagram of a transformer block, diode bridge and capacitor to a car battery

The device can be assembled on any base. It is important that all structural elements are reliably protected. If necessary, the circuit can be supplemented with a switch, as well as a voltmeter.

Transformerless charger

If the search for a transformer has led to a dead end, then you can use the simplest circuit without step-down devices. Below is a diagram that allows you to implement a charger for a battery without using voltage transformers.

Electrical circuit of the charger without using a voltage transformer

The role of transformers is performed by capacitors, which are designed for a voltage of 250V. The circuit should include at least 4 capacitors, placing them in parallel. A resistor and an LED are connected in parallel to the capacitors. The role of the resistor is to dampen the residual voltage after disconnecting the device from the network.

The circuit also includes a diode bridge designed to operate with currents up to 6A. The bridge is included in the circuit after the capacitors, and the wires going to the battery for charging are connected to its terminals.

How to charge a battery from a homemade device

Separately, you should understand the question of how to properly charge the battery with a homemade charger. To do this, it is recommended to adhere to the following recommendations:

  1. Maintain polarity. It is better to once again check the polarity of a homemade device with a multimeter rather than “biting your elbows”, because the cause of battery failure was an error with the wires.
  2. Do not test the battery by shorting the contacts. This method only “kills” the device, and does not revive it, as indicated in many sources.
  3. The device should be connected to a 220 V network only after the output terminals are connected to the battery. The device is turned off in the same way.
  4. Compliance with safety precautions, since work is carried out not only with electricity, but also with battery acid.
  5. The battery charging process must be monitored. The slightest malfunction can cause serious consequences.

Based on the above recommendations, it should be concluded that homemade devices, although acceptable, are still not capable of replacing factory ones. Making your own charger is not safe, especially if you are not confident that you can do it correctly. The material presents the simplest schemes for implementing chargers for car batteries, which will always be useful in the household.

A simple thyristor charger.

A device with electronic control of the charging current, made on the basis of a thyristor phase-pulse power regulator.
It does not contain scarce parts; if the parts are known to work, it does not require adjustment.
The charger allows you to charge car batteries with a current of 0 to 10 A, and can also serve as an adjustable power source for a powerful low-voltage soldering iron, vulcanizer, or portable lamp.
The charging current is similar in shape to pulse current, which is believed to help extend battery life.
The device is operational at ambient temperatures from - 35 °C to + 35 °C.
The device diagram is shown in Fig. 2.60.
The charger is a thyristor power regulator with phase-pulse control, powered from winding II of the step-down transformer T1 through the moctVDI + VD4 diode.
The thyristor control unit is made on an analogue of the unijunction transistor VTI, VT2. The time during which capacitor C2 is charged before switching the unijunction transistor can be adjusted with variable resistor R1. When its motor is positioned to the far right in the diagram, the charging current will become maximum, and vice versa.
Diode VD5 protects the control circuit of thyristor VS1 from reverse voltage that appears when the thyristor is turned on.

The charger can later be supplemented with various automatic components (switching off upon completion of charging, maintaining normal battery voltage during long-term storage, signaling the correct polarity of the battery connection, protection against output short circuits, etc.).
The shortcomings of the device include fluctuations in the charging current when the voltage of the electric lighting network is unstable.
Like all similar thyristor phase-pulse regulators, the device interferes with radio reception. To combat them, it is necessary to provide a network
LC- a filter similar to that used in switching power supplies.

Capacitor C2 - K73-11, with a capacity of 0.47 to 1 μF, or K73-16, K73-17, K42U-2, MBGP.
We will replace the KT361A transistor with KT361B - KT361Ё, KT3107L, KT502V, KT502G, KT501Zh - KT50IK, and KT315L - to KT315B + KT315D KT312B, KT3102L, KT503V + KT503G, P307. Instead of KD105B, diodes KD105V, KD105G or D226 with any letter index are suitable.
Variable resistor
R1- SP-1, SPZ-30a or SPO-1.
Ammeter PA1 - any direct current with a 10 A scale. You can make it yourself from any milliammeter by selecting a shunt based on a standard ammeter.
fuse
F1 - fusible, but it is convenient to use a 10 A network circuit breaker or an automobile bimetallic circuit breaker for the same current.
Diodes
VD1+VP4 can be any for a forward current of 10 A and a reverse voltage of at least 50 V (series D242, D243, D245, KD203, KD210, KD213).
The rectifier diodes and thyristor are placed on heat sinks, each with a useful area of ​​about 100 cm*. To improve the thermal contact of devices with heat sinks, it is better to use thermally conductive pastes.
Instead of the KU202V thyristor, KU202G - KU202E are suitable; It has been verified in practice that the device operates normally even with more powerful thyristors T-160, T-250.
It should be noted that it is possible to use the iron casing wall directly as a heat sink for the thyristor. Then, however, there will be a negative terminal of the device on the case, which is generally undesirable due to the threat of accidental short circuits of the positive output wire to the case. If you strengthen the thyristor through a mica gasket, there will be no risk of a short circuit, but the heat transfer from it will worsen.
The device can use a ready-made network step-down transformer of the required power with a secondary winding voltage of 18 to 22 V.
If the transformer has a voltage on the secondary winding of more than 18 V, the resistor
R5 should be replaced with another one of the highest resistance (for example, at 24 * 26 V, the resistance of the resistor should be increased to 200 Ohms).
In the case when the secondary winding of the transformer has a tap from the middle, or there are two identical windings and the voltage of each is within the specified limits, then it is better to design the rectifier according to the usual full-wave circuit with 2 diodes.
With a secondary winding voltage of 28 * 36 V, you can completely abandon the rectifier - its role will simultaneously be played by a thyristor
VS1 ( rectification - half-wave). For this version of the power supply you need a resistor between R5 and use the positive wire to connect a separating diode KD105B or D226 with any letter index (cathode to resistor R5). The choice of thyristor in such a circuit will be limited - only those that allow operation under reverse voltage are suitable (for example, KU202E).
For the described device, a unified transformer TN-61 is suitable. Its 3 secondary windings must be connected in series, and they are capable of delivering current up to 8 A.
All parts of the device, except transformer T1, diodes
VD1 + VD4 rectifier, variable resistor R1, fuse FU1 and thyristor VS1, mounted on a printed circuit board made of foil fiberglass laminate 1.5 mm thick.
The board drawing is presented in radio magazine No. 11 for 2001.



THE BELL

There are those who read this news before you.
Subscribe to receive fresh articles.
Email
Name
Surname
How do you want to read The Bell?
No spam