THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

И жиров.

Ученые утверждают, что на уровень холестерина влияет хром. Элемент считается биогенным, то есть, необходим организму, не только человеческому, но и всех млекопитающих.

При недостатке хрома замедляется их рост и «подскакивает» холестерин. Норма – 6 миллиграммов хрома от общей массы человека.

Ионы вещества есть во всех тканях тела. В день должны поступать 9 микрограммов.

Взять их можно из морепродуктов, перловой крупы, свеклы, печени и мяса утки. Пока закупаете продукты, расскажем о других назначениях и свойствах хрома.

Свойства хрома

Хром – химический элемент , относящийся к металлам. Цвет у вещества серебристо-голубой.

В элемент стоит под 24-ым порядковым, или, как еще говорят, атомным номером.

Число указывает на количество протонов в ядре. Что же касается электронов, вращающихся близ него, у них есть особое свойство – проваливаться.

Это значит, что одна или 2-е частицы могут перейти с одного подуровня на другой.

В итоге, 24-ый элемент способен наполовину заполнить 3-ий подуровень. Получается устойчивая электронная конфигурация.

Провал электронов – явление редкое. Кроме хрома, вспоминаются, пожалуй, лишь , , и .

Как и 24-ое вещество, они химически малоактивно. Не затем атом приходит к устойчивому состоянию, чтобы вступать в реакцию со всеми подряд.

При обычных условиях хром – элемент таблицы Менделеева , «расшевелить» который удается лишь .

Последний, является антиподом 24-го вещества, максимально активен. В ходе реакции образуется фторид хрома .

Элемент, свойства которого обсуждаются, не окисляется, не боится влаги и тугоплавок.

Последняя характеристика «оттягивает» реакции, возможные при нагреве. Так, взаимодействие с парами воды запускается лишь при 600-от градусах Цельсия.

Получается оксид хрома. Запускается и реакция с , дающая нитрид 24-го элемента.

При 600-от градусах, так же, возможны несколько соединений с и образование сульфида.

Если довести температуру до 2000, хром воспламенится при контакте с кислородом. Итогом горения станет окись темно-зеленого цвета.

Этот осадок легко реагирует с растворами и кислот. Итогом взаимодействия становятся хлорид и сульфид хрома. Все соединения 24-го вещества, как правило, ярко окрашены.

В чистом виде основная характеристика элемента хрома – токсичность. Пыль металла раздражает легочные ткани.

Могут проявиться дерматиты, то есть, заболевания аллергического характера. Соответственно, норму хрома для организма лучше не превышать.

Есть норма и по содержанию 24-го элемента в воздухе. На кубический метр атмосферы должны приходиться 0,0015 миллиграммов. Превышение стандарта считается загрязнением.

У металлического хрома высокая плотность – более 7 граммов на кубический сантиметр. Это значит, вещество довольно тяжелое.

Металла тоже довольно высока. Она зависит от от температуры электролита и плотности тока. У грибков и плесени это, видимо, вызывает уважение.

Если пропитать хромовым составом древесину, микроорганизмы не возьмутся разрушать ее. Этим пользуются строители.

Их устраивает и то, что обработанное дерево хуже горит, ведь хром – тугоплавкий металл. Как и где еще его можно применить, расскажем далее.

Применение хрома

Хром – легирующий элемент при выплавке . Помните, что в обычных условиях 24-ый металл не окисляется, не ржавеет?

Основа сталей – . Оно такими свойствами похвастаться не может. Поэтому и добавляют хром, повышающий стойкость к коррозии.

К тому же, добавка 24-го вещества снижает точку критической скорости охлаждения.

Силикотермический хром применяют для выплавки . Это дуэт 24-го элемента с никелем.

В качестве добавок идут , кремний, . Никель отвечает за пластичность , а хром – за его стойкость к окислению и твердость.

Соединяют хром и с . Получается сверхтвердый стеллит. Добавки к нему – молибден и .

Состав дорогостоящий, но необходим для наплавки машинных деталей с целью увеличения их износостойкости. Напыляют стеллит и на рабочие станки, .

В декоративных коррозийностойких покрытиях используют, как правило, соединения хрома .

Пригождается яркая гамма их цветов. В металлокерамике красочность не нужна, поэтому, применяют порошковый хром. Он добавляется, к примеру, для прочности в нижний слой коронок для .

Формула хрома составная часть . Это минерал из группы , но привычного цвета у него нет.

Уваровит – камень, и таким его делает именно хром. Не секрет, что используются .

Зеленая разновидность камня – не исключение, причем, ценится выше красной, поскольку редка. Еще, уваровит чуть стандартных .

Это тоже плюс, ведь минеральные вставки сложнее поцарапать. Гранят камень фасетно, то есть, формируя углы, что увеличивает игру света.

Добыча хрома

Добывать хром из минералов невыгодно. Большинство с 24-ым элементом , используются целиком.

К тому же, содержание хрома в , как правило, невелико. Вещество извлекают, в основанном, из руд.

С одной из них связано открытие хрома. Его нашли в Сибири. В 18-ом веке там нашли крокоит. Это свинцовая руда красного цвета.

Ее основа – , второй элемент – хром. Обнаружить его, удалось немецкому химику по фамилии Леман.

На момент открытия крокоита он гостил в Петербурге, где и провел опыты. Теперь, 24-ый элемент получают путем электролиза концентрированных водных растворов оксида хрома.

Возможен, так же, электролиз сульфата. Это 2 пути получения наиболее чистого хрома. Молекула оксида или сульфата разрушается в тигле, где исходные соединения поджигают.

24-ый элемент отделяется, остальное уходит в шлак. Остается выплавить хром в дуговой . Так извлекают наиболее чистый металл.

Есть и другие пути получения элемента хрома , к примеру, восстановление его оксида кремнием.

Но, такой способ дает металл с большим количеством примесей и, к тому же, более затратен, чем электролиз.

Цена хрома

В 2016-ом году стоимость хрома, пока, снижается. Январь начался с 7450-ти долларов за тонну.

К середине лета просят лишь 7100 условных единиц за 1000 килограммов металла. Данные предоставлены Infogeo.ru.

То есть, рассмотрены российские цены. На мировом стоимость хрома доходила почти до 9000 долларов за тонну.

Наименьшая же отметка лета отличается от российской всего на 25 долларов в сторону возрастания.

Если рассматривается не промышленная сфера, к примеру, металлургия, а польза хрома для организма , можно изучить предложения аптек.

Так, «Пиколинат» 24-го вещества стоит около 200-от рублей. За «Картнитин хром Форте» просят 320 рублей. Это ценник за упаковку из 30-ти таблеток.

Восполнить дефицит 24-го элемента может и «Турамин Хром». Его стоимость – 136 рублей.

Хром, кстати, входит в состав тестов на выявление наркотиков, в частности, марихуаны. Один тест стоит 40-45 рублей.

Хром является серебристо-белым, твердым, блестящим, но в то же время довольно хрупким металлом. Ранее считалось, что хром практически не обладает пластическими свойствами. Но в 70-е годы прошлого века путем переплава его электронным лучом в вакууме получен металл весьма пластичный, протягивающийся в тонкую проволоку. Курс химии, ч. 2. Специальная для машиностроительных и транспортных вузов/Г.П. Лучинский [и др.]. - М.: Высшая школа, 1972. - С.101.

Основные физические свойства хрома приведены ниже: Лаврухина А.К. Аналитическая химия хрома/А.К. Лаврухина, Л.В. Юкина. - М.: Наука, 1979. - С.9-10.

Атомная масса 51,996

Атомный объем, см 3 /г-атом 7,23

Атомный радиус Е

ковалентный 1,18

металлический 1,27

Давление пара (1560°К), атм 1,50 10 -6

Период решетки (а )* I , Б 2,8829

Плотность, г/см 3

рентгеновская 7,194

пикнометрическая 7,160

Потенциалы ионизации

I 1 = 6,764 I 4 = (51)

I 2 = 16,49 I 5 = 73

I 3 = 31 I 6 = 90,6

Твердость по Бринеллю (20°), Мпа 1120* 2

Температура плавления, °К 2176,0

Температура кипения, °К 2840,0

Теплота плавления, кал/моль 3300,0* 3

Теплота сублимации, ккал/моль 94,8* 3

Теплопроводность, вт/м град 88,6

Удельная электронная 1,40

теплоемкость г, мдж (моль град)

Энергия атомизации, ккал/моль

Энтропия S° Т (298° К)

газообразного Cr, кал/(г-атом град) 41,64

металлического Cr, кал/(моль град) 5,70

Главная руда хрома - это минерал хромит FeCr 2 O 4 , имеющий структуру шпинели, в которой атомы Cr (III) занимают октаэдрические, а Fe (II) - тетраэдрические положения. Коттон Ф. Основы неорганической химии/Ф. Коттон, Дж.Уилкинсон. - М.: Мир, 1979. - С.458.

Хромит восстанавливают углеродом, причем для получения феррохрома содержание оксида хрома в руде должно быть не менее 48%. В процессе плавки протекает реакция:

FeO Cr 2 O 3 + 4C > Fe + 2Cr + 4CO^

Помимо этого, хром входит в состав многих минералов, в частности в состав крокоита PbCrO 4 ; к другим минералам, содержащим хром, относятся финицит, менахлоит или феникохлоит 3PbO*2Cr 2 O 3 , березовит, трапакалит, магнохромит и др. Свойства элементов: справ.изд./М.Е.Дриц [и др.]. - М: Металлургия, 1985. - С.368.

На физические и химические свойства хрома существенно влияют и другие примеси. Так, например, в присутствии примесей Al, Cu, Ni, Fe, Co, Si, W, Mo (до ~ 1%) порог хрупкости хрома резко увеличивается; примеси водорода, кислорода и азота оказывают очень малое влияние. А.К. Лаврухина. Указ. соч. - С.9.

Хром технической чистоты получают алюминотермическими, силикотермическими, электролитическими и другими методами из оксида хрома, который получают их хромистого железняка. М.Е. Дриц. Указ. соч. - С.368.

Если нужно получить чистый хром, то хромит сначала сплавляют с NaOH и окисляют кислородом, чтобы перевести Cr (III) в CrO 4 2-. Сплав растворяют в воде, осаждают из нее бихромат натрия, который затем восстанавливают углеродом:

Na 2 Cr 2 O 7 + 2C > Cr 2 O 3 + Na 2 CO 3 + CO^

Образовавшийся оксид восстанавливают до металлического хрома:

Cr 2 O 3 + 2Al > Al 2 O 3 + 2Cr Ф. Коттон. Указ. соч. - С.458.

Наиболее чистый хром для лабораторных исследований получают йодидным методом. Этот процесс основан на образовании летучих йодидов хрома (при 700-900°С) и их диссоциации н нагретой поверхности (при 1000-1100°С). Металлический хром после йодидного рафинирования пластичен в литом состоянии (удлинение при растяжении 9-18%). М.Е. Дриц. Указ. соч. - С.368-369.

Для металлического хрома известны полиморфные видоизменения, одно из которых является устойчивым - это б-хром. в-хром является менее устойчивой модификацией, получается при электролитическом осаждении. Кристаллические решетки б-хрома и в-хрома приведены ниже на рисунке. Г.П. Лучинский. Указ. соч. - С.101-102.

В неравновесных условиях возможно формирование кристаллов хрома с другой структурой; при конденсации паров хрома получена разновидность с примитивной кубической решеткой (а = 4,581Е), близкой к структурному типу в-W. Хром обладает сложной магнитной структурой; для него характерны три магнитных превращения: при 120, 310, 473°К. А.К. Лаврухина. Указ. соч. - С.9.

Как уже говорилось выше, хром является элементом VIБ группы четвертого периода.

Если исключить стехиометрию соединений, хром напоминает элементы VIБ группы (группа серы) только тем, что образует кислый оксид, а CrO 2 Cl 2 имеет ковалентную природу и легко гидролизуется. Ф. Коттон. Указ. соч. - С.458.

Электронная структура его атомов - 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 1 . Хром относится к группе переходных элементов, у которых d-орбитали заполнены лишь частично. Это обусловливает способность хрома образовывать парамагнитные соединения, его переменную валентность и окраску многих соединений.

Характерной особенностью хрома как переходного элемента d-группы является способность к образованию многочисленных комплексных соединений с различными структурой, валентностью и типами связей. Образование комплексных соединений с нейтральными молекулами приводит к стабилизации низших состояний окисления d-элемнтов. В следствии этого существуют соединения хрома в состоянии окисления 0 (система d 6). Одновалентный хром достоверно известен только в виде комплексов K 3 , ClO 4 (где Dip - 2,2?-дипиридил). А.К. Лаврухина. Указ. соч. - С.12.

Чаще всего соединения хрома имеют следующее пространственное строение:

> Октаэдрические структуры, как в 2+ или 3+

> Тетраэдрические структуры, как в Cr(O-трет-C 4 H 9) 4

> Тетраэдрические структуры, как в CrO 4 3- , CrO 4 2- , CrO 3 Ф. Коттон. Указ. соч. - С.459.

Хром, являясь восстановителем, может отдавать от 2 до 6 электронов.

Поэтому для хрома характерны следующие степени окисления: от -2 до +6. В соединениях хром чаще проявляет степени +2, +3, +6, реже +1, +4, +5. М.Е. Дриц. Указ. соч. - С.373.

Для хрома наиболее устойчивая степень окисления +3 (d 3- система; заполнение на половину t 2g- орбиталей при октаэдрической координации). Известны так же соединения с формальной степенью окисления -2. В степени окисления +6 хром несколько напоминает ванадий (+5). Анорганикум/Г. Блументаль [и др.]. - М.: Мир, 1984. - С.617-618.

Растворимость соединений хрома варьируется, главным образом, в зависимости от степени окисления.

Наиболее превалирующими являются 3-валентное и 6-валентное состояния хрома. Регистрационные номера, присвоенные Chemical Abstracts Service (CAS) для 3-валентного и 6-валентного хрома - 16065-83-3 и 18540-29-9 соответственно. Wilbur S, Abadin H, Fay M, et al.

Регистрационный номер хрома Chemical Abstracts Service (CAS) - 7440-47-3. Гигиенические критерии состояния окружающей среды. Хром. Современное издание Программы ООН по окружающей среде. Женева. 1990. Таблица №1.

В чистом виде хром(0) практически не встречается. Тем не менее существует относительно нестойкий хром в 2-валентном состоянии, который под влиянием окружающей среды легко окисляется до хрома (III).

Соединения хрома более стабильны в 3-валентном состоянии более стабильны во внешней среде и встречаются в природе в рудах, таких как - феррохроматы (FeCr 2 O 4). 6-валентный хром, на втором месте по стабильности, однако он встречается в таких редких минералах, как крокоит (PbCrO 4). 6-валентные соединения хрома в первую очередь являются результатом деятельности человека. Wilbur S, Abadin H, Fay M, et al.

Взаимосвязь 3-валентного и 6-валентного состояний хрома описывается уравнением:

Cr 2 6+ O 7 2- + 14H + + 6з > 2Cr (III) +7H 2 O + 1.33V

Различия между двумя состояниями по электронному заряду отражают сильные окислительные свойства 6-валентного хрома и значит энергию, необходимая для окисления 3-валентной формы в 6-валентную. Гигиенические критерии состояния окружающей среды. Хром. Современное издание Программы ООН по окружающей среде. Женева. 1990.

В ряду напряжений хром находится среди электроотрицательных элементов и сравнительно активных металлов, способных переходить в раствор с образованием положительных ионов (хром находится между цинком и железом: Zn¦Zn 2+ - 0,762; Cr¦Cr 3+ - 0,71; Fe ¦ Fe 2+ - 044). Михайленко Я.И. Курс общей и неорганической химии/Я.И. Михайленко. - М.: Высшая школа, 1966. - С.320. Однако на воздухе и в окислительных средах хром легко пассивируется и приобретает свойства благородных металлов.

На воздухе осадки хрома сохраняют свой блеск и окраску. Объясняется это тем, что пассивная пленка на поверхности хрома, отличающаяся малой толщиной и высокой прозрачностью, хорошо предохраняет покрытие от потускнения. При повышении температуры до 400-500°С окисляемость хрома возрастает незначительно. Температура быстрого окисления хрома около 1100°С и более. Черкез М.Б. Хромирование/М.Б. Черкез. - Л.: Машиностроение, 1971. - С.31.

Наиболее распространенным оксидом является Cr 2 O 3 (31,6 О), представляющий собой тугоплавкое вещество зеленого цвета (зеленый хром), применяемое для приготовления клеевой и масляной красок. Высший оксид хрома CrO 3 - темнокрасные игольчатые кристаллы представляет собой хромовый ангидрид, хорошо растворим в воде. М.Е. Дриц. Указ. соч. - С.374.

Фторид CrF 2 - синевато-зеленые кристаллы, слаборастворимые в воде; на воздухе окисляются до Cr 2 O 3 . Получают CrF 2 пропускание газ. HF над порошком металлического хрома при температуре красного каления. Известны двойные фториды с катионами NH 4+ и К + состава M I CrF 3

Фторид хрома (III) существует в безводной и гидратированной формах. Зеленоватые иглы CrF 3 нерастворимы в воде, спирте, аммиаке, плохо растворимы в кислотах. Гидратированная форма нерастворима в этаноле, слегка растворимо в воде. А.К. Лаврухина. Указ. соч. - С.19-20.

При нагревании соединяется непосредственно с другими галогенами, а также с азотом, кремнием, бором и некоторыми металлами:

2Cr + 3Cl 2 > 2CrCl 3

Cr + 2Si > CrSi 2

Известны два нитрида хрома Cr 2 N и CrN. Последний получают пропусканием тока азота над нагретым при 600-900°С тонким порошком пирофорного хрома: А.К. Лаврухина. Указ. соч. - С.21.

2Cr + N 2 > 2CrN

Хлорид CrCl 2 - бесцветное кристаллическое гигроскопичное соединение, растворимое в воде. Получают CrCl 2 пропускание газ. HCl над порошкообразным хромом при температуре красного каления.

Хлорид хрома (III) получают многими способами. Безводный CrCl 3 - красно-фиолетовые кристаллы, плохо растворимы в воде, однако в присутствии следов восстановителей его растворимость увеличивается. Нерастворим в абсолютном этаноле и метаноле, ацетальдегиде, ацетоне, диэтиловом эфире.

Бромид CrBr 2 , соединение желтовато-белого цвета, получают при взаимодействии металлического Cr и сухого HBr при высокой температуре. Растворим в воде с образованием голубого раствора и в этаноле.

Бромид CrBr 3 - черное кристаллическое соединение, которое получают действием брома на нагретый хром. Растворим в горячей воде.

Йодид CrJ 2 соединение бледно-серого цвета, получают при синтезе из Cr и J 2 при 800°С; растворим в воде. Черный CrJ 3 получают нагреванием йода с хромом при 500°С в вакуумированной трубке. Трудно растворяется в воде. А.К. Лаврухина. Указ. соч. - С.20-21.

В 1926 году Вейсельфельдеру удалось впервые получить гидрид хрома CrH 3 . Я.И. Михайленко. Указ. соч. - С.320. Также известен гидрид CrH, эти гидриды различаются кристаллической структурой и свойствами. Они не устойчивы и разлагаются при нагревании. Хром поглощает значительные количества водорода, особенно при его электролитическом выделении из растворов, содержащих в качестве восстановителя сахар. Содержание водорода в образующемся твердом растворе может доходить до 5 ат. %. Г.П. Лучинский. Указ. соч. - С.103.

В результате взаимодействия металлов с углеродом при высоких температурах образуются карбиды разнообразного состава. Наиболее изученными являются Cr 4 C, Cr 2 C 3 , Cr 3 C 2 . Г.П. Лучинский. Указ. соч. - С.103.

С серой хром образует сульфиды CrS (38,1% S), Cr 2 S 3 (47,9% S), Cr 3 S 4 (45,1% S). Сульфид CrS неустойчив при комнатной температуре и распадается с выделением чистого хрома. М.Е. Дриц. Указ. соч. - С.374.

Получают сульфиды при 24-часовом нагревании в электрической печи при 1000°С смесей соответствующих эквивалентных количеств электролитического хрома и очищенной серы в запаянных кварцевых ампулах.

Достоверно изучены только дифосфид CrP 2 , образующийся при синтезе из элементов при высоких температурах, монофосфид CrP, образующийся при синтезе из элементов при пропускании фосфина над нагретым до 850°С порошком хрома, и субфосфид Cr 3 P. А.К. Лаврухина. Указ. соч. - С.22.

Ближайшими аналогами хрома являются молибден и вольфрам, с которыми он образует непрерывные твердые растворы. По мере увеличения различия в физико-химических свойствах хрома и взаимодействующего с ним элемента растворимость уменьшается, а в пределе отсутствует. Элементы IА подгруппы - литий, натрий, калий, рубидий и цезий - при обычных условиях с хромом не взаимодействуют из-за большого различия в размерах атомных диаметров. Золото, медь и серебро крайне ограниченно растворимы в хроме. хром химический оксид металлический

Бериллий образует с хромом ограниченные твердые растворы с переменной по температуре растворимостью, а также металлическое соединение CrBe 2 . Сведения о взаимодействии хрома с магнием, кальцием, стронцием и барием отсутствуют. Возможность образования твердых растворов этих элементов в хроме крайне ограничена из-за большого различия в величинах атомного диаметра хрома и указанных элементов.

Крайне слабо выражена также склонность хрома к взаимодействию с металлами IIБ подгруппы - цинком, кадмием и ртутью. С элементами IIIА подгруппы - иттрием и лантаном - хром образует ограниченные твердые растворы и металлические соединения - бориды и алюминиды; некоторые из них, например, CrB, представляют практический интерес при разработке сплавов с особыми свойствами.

С элементами IVА подгруппы - титаном, цирконием и гафнием - хром образует ограниченные твердые растворы и соединения типа АВ 2 , относящиеся по своей кристаллохимической природе к фазам Лавеса. Эти фазы TiCr 2 , ZrCr 2 , HfCr 2 имеют при комнатной температуре структуру типа MgCu 2 , а при нагреве претерпевают полиморфное превращение MgCu 2 - MgZn 2 .

С кремнием хром образует силициды: Cr 3 Si, Cr 3 Si 2 , Cr 5 Si 3 , CrSi, CrSi 2 .

С элементами VA подгруппы хром взаимодействует по-разному. С ванадием хром образует непрерывные твердые растворы, а с ниобием и танталом - металлические соединения типа фаз Лавеса - NbCr 2 и TaCr 2 .

С марганцем и рением взаимодействие хрома практически одинаково - образуются ограниченно твердые растворы большой протяженности со стороны хрома и промежуточные соединения типа у-фазы.

С элементами VIII группы хром образует ограниченные твердые растворы, а с некоторыми из них (кобальтом, железом, платиной, палладием, иридием и рутением), кроме того, металлические соединения. Металлические соединения хрома с платиной, иридием, рутением имеют кристаллическую решетку типа в-вольфрама. В системах хром-железо и хром-кобальт существует у-фаза, способствующая повышению твердости и охрупчиванию сплавов. М.Е. Дриц. Указ. соч. - С.374-375.

Хром обладает коррозийной стойкостью по отношению ко многим кислотам, щелочам и солям. М.Б. Черкез. Указ.соч. - С.31. Некоторые кислоты, например, концентрированная азотная, фосфорная, хлорноватая, хлорная, образуют на хроме окисную пленку, приводя его к пассивации. В этом состоянии хром обладает исключительно высокой коррозионной стойкостью и на него не действуют разбавленные минеральные кислоты. Хром является электроотрицательным по отношению к наиболее практически важным металлам и сплавам, и если он с ними образует гальванопару, то ускоряет их коррозию. М.Е. Дриц. Указ. соч. - С.373.

В то же время, как уже говорилось выше, хром устойчив к коррозии, поэтому он используется как защитное покрытие, которое наносится электролизом. Ф. Коттон. Указ. соч. - С.458.

В соляной и горячей, концентрированной серной кислоте хром растворяется энергично:

Cr + 2HCl > CrCl 2 + H 2 ^

Cr + H 2 SO 4 > CrSO 4 + H 2 ^

Однако на скорость растворения хрома большое влияние оказывает температура электролита при его осаждении. М.Б. Черкез. Указ.соч. - С.31.

Известно больше число простых и комплексных соединений Cr (II) и Cr (III) с органическими кислотами. Так ацетат хрома (II) - одно из самых распространенных и устойчивых соединений двухвалентного хрома; известны соли карбоновых кислот. Хром (III) образует комплексы со щавелевой кислотой: + , 0 (где ОАс - ацетат-ион), - , 3- .

Изучены реакции комплексообразования Cr (III) c малоновой и янтарной кислотами; получены комплексы состава 1:1, 1:2, 1:3. Аналогичные составы комплексов получены при взаимодействии Cr (III) и фталевой кислоты. Комплексы Cr (III) с адипириновой кислотой (Ad) имеют составы 0 и - . Изучены комплексы Cr (III) с аскорбиновой кислотой и ализаринсульфоновой кислотами. Поучены комплексы Cr (II) и Cr (III) с пиколиновой кислотой составов CrА + и CrА 2+ . Установлено исключительно резкое уменьшение восстановительных свойств Cr (II) в комплексе CrА + ; его окисление не происходит даже в токе кислорода при 20°С.

Хром (III) образует комплексы с этилендиаминтетрауксусной кислотой (H 4 Y) и ее производными очень медленно; этот процесс ускоряется при нагревании. В водных растворах при разных рН существует четыре различных комплекса: фиолетовые Н и - , голубой 2- и в сильно щелочном растворе - зеленый 3- . С нитрилотриуксусной кислотой (Н 3 Х) в щелочных растворах Cr (III) образует гидроскокомплексы - (фиолетовый) и 2- (зеленый). А.К. Лаврухина. Указ. соч. - С.34-25.

«Национальный исследовательский Томский политехнический Университет»

Институт природных ресурсов Геоэкология и геохимия

Хром

По дисциплине:

Химия

Выполнил:

студент группы 2Г41 Ткачева Анастасия Владимировна 29.10.2014

Проверил:

преподаватель Стась Николай Федорович

Положение в периодической системе

Хром - элемент побочной подгруппы 6-ой группы 4-го периода периодической системы химических элементов Д. И. Менделеева с атомным номером 24. Обозначается символом Cr (лат. Chromium ). Простое вещество хром - твёрдый металлголубовато-белого цвета. Хром иногда относят к чёрным металлам.

Строение атома

17 Cl)2)8)7 - схема строения атома

1s2s2p3s3p- электронная формула

Атом располагается в III периоде, и имеет три энергетических уровня

Атом располагается в VII в группе, в главной подгруппе – на внешнем энергетическом уровне 7 электронов

Свойства элемента

Физические свойства

Хром - белый блестящий металл с кубической объемно-центрированной решеткой, а = 0,28845 нм, отличающийся твердостью и хрупкостью, с плотностью 7,2 г/см 3 , один из самых твердых чистых металлов (уступает только бериллию, вольфраму и урану), с температурой плавления 1903 град. И с температурой кипения около 2570 град. С. На воздухе поверхность хрома покрывается оксидной пленкой, которая предохраняет его от дальнейшего окисления. Добавка углерода к хрому еще больше увеличивает его твердость.

Химические свойства

Хром при обычных условиях – инертный металл, при нагревании становится довольно активным.

    Взаимодействие с неметаллами

При нагревании выше 600°С хром сгорает в кислороде:

4Cr + 3O 2 = 2Cr 2 O 3 .

С фтором реагирует при 350°С, с хлором – при 300°С, с бромом – при температуре красного каления, образуя галогениды хрома (III):

2Cr + 3Cl 2 = 2CrCl 3 .

С азотом реагирует при температуре выше 1000°С с образованием нитридов:

2Cr + N 2 = 2CrN

или 4Cr + N 2 = 2Cr 2 N.

2Cr + 3S = Cr 2 S 3 .

Реагирует с бором, углеродом и кремнием с образованием боридов, карбидов и силицидов:

Cr + 2B = CrB 2 (возможно образование Cr 2 B, CrB, Cr 3 B 4 , CrB 4),

2Cr + 3C = Cr 2 C 3 (возможно образование Cr 23 C 6 , Cr 7 B 3),

Cr + 2Si = CrSi 2 (возможно образование Cr 3 Si, Cr 5 Si 3 , CrSi).

С водородом непосредственно не взаимодействует.

    Взаимодействие с водой

В тонкоизмельченном раскаленном состоянии хром реагирует с водой, образуя оксид хрома (III) и водород:

2Cr + 3H 2 O = Cr 2 O 3 + 3H 2

    Взаимодействие с кислотами

В электрохимическом ряду напряжений металлов хром находится до водорода, он вытесняет водород из растворов неокисляющих кислот:

Cr + 2HCl = CrCl 2 + H 2 ;

Cr + H 2 SO 4 = CrSO 4 + H 2 .

В присутствии кислорода воздуха образуются соли хрома (III):

4Cr + 12HCl + 3O 2 = 4CrCl 3 + 6H 2 O.

Концентрированная азотная и серная кислоты пассивируют хром. Хром может растворяться в них лишь при сильном нагревании, образуются соли хрома (III) и продукты восстановления кислоты:

2Cr + 6H 2 SO 4 = Cr 2 (SO 4) 3 + 3SO 2 + 6H 2 O;

Cr + 6HNO 3 = Cr(NO 3) 3 + 3NO 2 + 3H 2 O.

    Взаимодействие с щелочными реагентами

В водных растворах щелочей хром не растворяется, медленно реагирует с расплавами щелочей с образованием хромитов и выделением водорода:

2Cr + 6KOH = 2KCrO 2 + 2K 2 O + 3H 2 .

Реагирует с щелочными расплавами окислителей, например хлоратом калия, при этом хром переходит в хромат калия:

Cr + KClO 3 + 2KOH = K 2 CrO 4 + KCl + H 2 O.

    Восстановление металлов из оксидов и солей

Хром – активный металл, способен вытеснять металлы из растворов их солей: 2Cr + 3CuCl 2 = 2CrCl 3 + 3Cu.

Свойства простого вещества

Устойчив на воздухе за счёт пассивирования. По этой же причине не реагирует с серной и азотной кислотами. При 2000 °C сгорает с образованием зелёного оксида хрома(III) Cr 2 O 3 , обладающего амфотерными свойствами.

Синтезированы соединения хрома с бором (бориды Cr 2 B, CrB, Cr 3 B 4 , CrB 2 , CrB 4 и Cr 5 B 3), с углеродом (карбиды Cr 23 C 6 , Cr 7 C 3 и Cr 3 C 2), c кремнием (силициды Cr 3 Si, Cr 5 Si 3 и CrSi) и азотом (нитриды CrN и Cr 2 N).

Соединения Cr(+2)

Степени окисления +2 соответствует основный оксид CrO (чёрный). Соли Cr 2+ (растворы голубого цвета) получаются при восстановлении солей Cr 3+ или дихроматов цинком в кислой среде («водородом в момент выделения»):

Все эти соли Cr 2+ - сильные восстановители вплоть до того, что при стоянии вытесняют водород из воды. Кислородом воздуха, особенно в кислой среде, Cr 2+ окисляется, в результате чего голубой раствор быстро зеленеет.

Коричневый или желтый гидроксид Cr(OH) 2 осаждается при добавлении щелочей к растворам солей хрома(II).

Синтезированы дигалогениды хрома CrF 2 , CrCl 2 , CrBr 2 и CrI 2

Соединения Cr(+3)

Степени окисления +3 соответствует амфотерный оксид Cr 2 O 3 и гидроксид Cr(OH) 3 (оба - зелёного цвета). Это - наиболее устойчивая степень окисления хрома. Соединения хрома в этой степени окисления имеют цвет от грязно-лилового (ион 3+) до зелёного (в координационной сфере присутствуют анионы).

Cr 3+ склонен к образованию двойных сульфатов вида M I Cr(SO 4) 2 ·12H 2 O (квасцов)

Гидроксид хрома (III) получают, действуя аммиаком на растворы солей хрома (III):

Cr+3NH+3H2O→Cr(OH)↓+3NH

Можно использовать растворы щелочей, но в их избытке образуется растворимый гидроксокомплекс:

Cr+3OH→Cr(OH)↓

Cr(OH)+3OH→

Сплавляя Cr 2 O 3 со щелочами получают хромиты:

Cr2O3+2NaOH→2NaCrO2+H2O

Непрокаленный оксид хрома(III) растворяется в щелочных растворах и в кислотах:

Cr2O3+6HCl→2CrCl3+3H2O

При окислении соединений хрома(III) в щелочной среде образуются соединения хрома(VI):

2Na+3HO→2NaCrO+2NaOH+8HO

То же самое происходит при сплавлении оксида хрома (III) со щелочью и окислителями, или со щелочью на воздухе (расплав при этом приобретает жёлтую окраску):

2Cr2O3+8NaOH+3O2→4Na2CrO4+4H2O

Соединения хрома (+4) [

При осторожном разложении оксида хрома(VI) CrO 3 в гидротермальных условиях получают оксид хрома(IV) CrO 2 , который является ферромагнетикоми обладает металлической проводимостью.

Среди тетрагалогенидов хрома устойчив CrF 4 , тетрахлорид хрома CrCl 4 существует только в парах.

Соединения хрома (+6)

Степени окисления +6 соответствует кислотный оксид хрома (VI) CrO 3 и целый ряд кислот, между которыми существует равновесие. Простейшие из них - хромовая H 2 CrO 4 и двухромовая H 2 Cr 2 O 7 . Они образуют два ряда солей: желтые хроматы и оранжевые дихроматы соответственно.

Оксид хрома (VI) CrO 3 образуется при взаимодействии концентрированной серной кислоты с растворами дихроматов. Типичный кислотный оксид, при взаимодействии с водой он образует сильные неустойчивые хромовые кислоты: хромовую H 2 CrO 4 , дихромовую H 2 Cr 2 O 7 и другие изополикислоты с общей формулой H 2 Cr n O 3n+1 . Увеличение степени полимеризации происходит с уменьшением рН, то есть увеличением кислотности:

2CrO+2H→Cr2O+H2O

Но если к оранжевому раствору K 2 Cr 2 O 7 прилить раствор щёлочи, как окраска вновь переходит в жёлтую так как снова образуется хромат K 2 CrO 4:

Cr2O+2OH→2CrO+HO

До высокой степени полимеризации, как это происходит у вольфрама и молибдена, не доходит, так как полихромовая кислота распадается на оксид хрома(VI) и воду:

H2CrnO3n+1→H2O+nCrO3

Растворимость хроматов примерно соответствует растворимости сульфатов. В частности, желтый хромат бария BaCrO 4 выпадает при добавлении солей бария, как к растворам хроматов, так и к растворам дихроматов:

Ba+CrO→BaCrO↓

2Ba+CrO+H2O→2BaCrO↓+2H

Образование кроваво-красного малорастворимого хромата серебра используют для обнаружения серебра в сплавах при помощи пробирной кислоты.

Известны пентафторид хрома CrF 5 и малоустойчивый гексафторид хрома CrF 6 . Также получены летучие оксигалогениды хрома CrO 2 F 2 и CrO 2 Cl 2 (хромилхлорид).

Соединения хрома(VI) - сильные окислители, например:

K2Cr2O7+14HCl→2CrCl3+2KCl+3Cl2+7H2O

Добавление к дихроматам перекиси водорода, серной кислоты и органического растворителя (эфира) приводит к образованию синего пероксида хрома CrO 5 L (L - молекула растворителя), который экстрагируется в органический слой; данная реакция используется как аналитическая.

Открытие хрома относится к периоду бурного развития химико-аналитических исследований солей и минералов. В России химики проявляли особый интерес к анализу минералов, найденных в Сибири и почти неизвестных в Западной Европе. Одним из таких минералов была сибирская красная свинцовая руда (крокоит), описанная еще Ломоносовым. Минерал исследовался, но ничего, кроме окислов свинца, железа и алюминия в нем не было найдено. Однако в 1797 году Вокелен, прокипятив тонко измельченный образец минерала с поташом и осадив карбонат свинца, получил раствор, окрашенный в оранжево – красный цвет. Из этого раствора он выкристаллизовал рубиново-красную соль, из которой выделили окисел и свободный металл, отличный от всех известных металлов. Вокелен назвал его Хром (Chrome ) от греческого слова - окраска, цвет; правда здесь имелось в виду свойство не металла, а его ярко окрашенных солей .

Нахождение в природе.

Важнейшей рудой хрома, имеющей практическое значение, является хромит, приблизительный состав которого отвечает формуле FeCrO 4.

Он встречается в Малой Азии, на Урале, в Северной Америке, на юге Африки. Техническое значение имеет также вышеназванный минерал крокоит – PbCrO 4 . В природе встречаются также оксид хрома (3) и некоторые другие его соединения. В земной коре содержание хрома в пересчете на металл составляет 0,03%. Хром обнаружен на Солнце, звездах, метеоритах.

Физические свойства .

Хром – белый, твердый и хрупкий металл, исключительно химически стойкий к воздействию кислот и щелочей. На воздухе он окисляется, имеет на поверхности тонкую прозрачную пленку оксида. Хром имеет плотность 7,1 г/см 3 , его температура плавления составляет +1875 0 С.

Получение.

При сильном нагреве хромистого железняка с углем происходит восстановление хрома и железа:

FeO * Cr 2 O 3 + 4C = 2Cr + Fe + 4CO

В результате этой реакции образуется сплав хрома с железом, отличающийся высокой прочностью. Для получения чистого хрома, его восстанавливают из оксида хрома(3) алюминием:

Cr 2 O 3 + 2Al = Al 2 O 3 + 2Cr

В данном процессе обычно используют два оксида – Cr 2 O 3 и CrO 3

Химические свойства.

Благодаря тонкой защитной пленке оксида, покрывающей поверхность хрома, он весьма устойчив к воздействию агрессивных кислот и щелочей. Хром не реагирует с концентрированными азотной и серной кислотами, а также с фосфорной кислотой. Со щелочами хром вступает во взаимодействие при t = 600-700 о C. Однако хром взаимодействует с разбавленными серной и соляной кислотами, вытесняя водород:

2Cr + 3H 2 SO 4 = Cr 2 (SO 4) 3 + 3H 2
2Cr + 6HCl = 2CrCl 3 + 3H 2

При высокой температуре хром горит в кислороде, образуя оксид(III).

Раскаленный хром реагирует с парами воды:

2Cr + 3H 2 O = Cr 2 O 3 + 3H 2

Хром при высокой температуре реагирует также с галогенами, галоген - водородами, серой, азотом, фосфором, углем, кремнием, бором, например:

Cr + 2HF = CrF 2 + H 2
2Cr + N2 = 2CrN
2Cr + 3S = Cr 2 S 3
Cr + Si = CrSi

Вышеуказанные физические и химические свойства хрома нашли свое применение в различных областях науки и техники. Так, например, хром и его сплавы используются для получения высокопрочных, коррозионно-стойких покрытий в машиностроении. Сплавы в виде феррохрома используются в качестве металлорежущих инструментов. Хромированные сплавы нашли применение в медицинской технике, при изготовлении химического технологического оборудования.

Положение хрома в периодической системе химических элементов:

Хром возглавляет побочную подгруппу VI группы периодической системы элементов. Его электронная формула следующая:

24 Cr IS 2 2S 2 2P 6 3S 2 3P 6 3d 5 4S 1

В заполнении орбиталей электронами у атома хрома нарушается закономерность, согласно которой сначала должна была бы заполнятся 4S – орбиталь до состояния 4S 2 . Однако, вследствие того, что 3d – орбиталь занимает в атоме хрома более выгодное энергетическое положение, происходит ее заполнение до значения 4d 5 . Такое явление наблюдается у атомов некоторых других элементов побочных подгрупп. Хром может проявлять степени окисления от +1 до +6. Наиболее устойчивыми являются cоединения хрома со степенями окисления +2, +3, +6.

Соединения двухвалентного хрома.

Оксид хрома (II) CrO – пирофорный черный порошок (пирофорность – способность в тонкораздробленном состоянии воспламенятся на воздухе). CrO растворяется в разбавленной соляной кислоте:

CrO + 2HCl = CrCl 2 + H 2 O

На воздухе при нагревании свыше 100 0 С CrO превращается в Cr 2 O 3 .

Соли двухвалентного хрома образуются при растворении металлического хрома в кислотах. Эти реакции проходят в атмосфере малоактивного газа (например H 2), т.к. в присутствии воздуха легко происходит окисление Cr(II) до Cr(III).

Гидроксид хрома получают в виде желтого осадка при действии раствора щелочи на хлорид хрома (II):

CrCl 2 + 2NaOH = Cr(OH) 2 + 2NaCl

Cr(OH) 2 обладает основными свойствами, является восстановителем. Гидратированный ион Cr2+ окрашен в бледно – голубой цвет. Водный раствор CrCl 2 имеет синюю окраску. На воздухе в водных растворах соединения Cr(II) переходят в соединения Cr(III). Особенно это ярко выражается у гидроксида Cr(II):

4Cr(OH) 2 + 2H 2 O + O 2 = 4Cr(OH) 3

Соединения трехвалентного хрома.

Оксид хрома (III) Cr 2 O 3 – тугоплавкий порошок зеленого цвета. По твердости близок к корунду. В лаборатории его можно получить нагреванием дихромата аммония:

(NH 4) 2 Cr 2 O 7 = Cr 2 O 3 + N 2 + 4H 2

Cr 2 O 3 – амфотерный оксид, при сплавлении со щелочами образует хромиты: Cr 2 O 3 + 2NaOH = 2NaCrO 2 + H 2 O

Гидроксид хрома также является амфотерным соединением:

Cr(OH) 3 + HCl = CrCl 3 + 3H 2 O
Cr(OH) 3 + NaOH = NaCrO 2 + 2H 2 O

Безводный CrCl 3 имеет вид листочков темно-фиолетового цвета, совершенно нерастворим в холодной воде, при кипячении он растворяется очень медленно. Безводный сульфат хрома (III) Cr 2 (SO 4) 3 розового цвета, также плохо растворим в воде. В присутствии восстановителей образует фиолетовый сульфат хрома Cr 2 (SO 4) 3 *18H 2 O. Известны также зеленые гидраты сульфата хрома, содержащие меньшее количество воды. Хромовые квасцы KCr(SO 4) 2 *12H 2 O выкристаллизовываются из растворов, содержащих фиолетовый сульфат хрома и сульфат калия. Раствор хромовых квасцов при нагревании становится зеленым благодаря образованию сульфатов.

Реакции с хромом и его соединениями

Почти все соединения хрома и их растворы интенсивно окрашены. Имея бесцветный раствор или белый осадок, мы можем с большой долей вероятности сделать вывод об отсутствии хрома.

  1. Сильно нагреем в пламени горелки на фарфоровой чашке такое количество бихромата калия, которое поместится на кончике ножа. Соль не выделит кристаллизационной воды, а расплавится при температуре около 400 0 С с образование темной жидкости. Погреем ее еще несколько минут на сильном пламени. После охлаждения на черепке образуется зеленый осадок. Часть его растворим в воде (она приобретает желтый цвет), а другую часть оставим на черепке. Соль при нагревании разложилась, в результате образовался растворимый желтый хромат калия K 2 CrO 4 и зеленый Cr 2 O 3 .
  2. Растворим 3г порошкообразного бихромата калия в 50мл воды. К одной части добавим немного карбоната калия. Он растворится с выделением CO 2 , а окраска раствора станет светло – желтой. Из бихромата калия образуется хромат. Если теперь по порциям добавить 50% раствор серной кислоты, то снова появится красно – желтая окраска бихромата.
  3. Нальем в пробирку 5мл. раствора бихромата калия, прокипятим с 3мл концентрированной соляной кислоты под тягой. Из раствора выделяется желто-зеленый ядовитый газообразный хлор, потому, что хромат окислит HCl до Cl 2 и H 2 O. Сам хромат превратится в зеленый хлорид трехвалентного хрома. Его можно выделить выпариванием раствора, а потом, сплавив с содой и селитрой, перевести в хромат.
  4. При добавлении раствора нитрата свинца выпадает желтый хромат свинца; при взаимодействии с раствором нитрата серебра образуется красно – коричневый осадок хромата серебра.
  5. Добавим пероксид водорода к раствору бихромата калия и подкислим раствор серной кислотой. Раствор приобретает глубокий синий цвет благодаря образованию пероксида хрома. Пероксид при взбалтывании с некоторым количеством эфира перейдет в органический растворитель и окрасит его в голубой цвет. Данная реакция специфична для хрома и очень чувствительна. С ее помощью можно обнаружить хром в металлах и сплавах. Прежде всего необходимо растворить металл. При длительном кипячении с 30% - ной серной кислотой (можно добавить и соляную кислоту) хром и многие стали частично растворяются. Полученный раствор содержит сульфат хрома (III). Чтобы можно было провести реакцию обнаружения, сначала нейтрализуем его едким натром. В осадок выпадает серо-зеленый гидроксид хрома (III), который растворится в избытке NaOH и образует зеленый хромит натрия. Профильтруем раствор и добавим 30% -ый пероксид водорода. При нагревании раствор окрасится в желтый цвет, так как хромит окислится до хромата. Подкисление приведет к появлению голубой окраски раствора. Окрашенное соединение можно экстрагировать, встряхивая с эфиром.

Аналитические реакции на ионы хрома.

  1. К 3-4 каплям раствора хлорида хрома CrCl 3 прибавьте 2М раствор NaOH до растворения первоначально выпавшего осадка. Обратите внимание на цвет образовавшегося хромита натрия. Нагрейте полученный раствор на водяно бане. Что при этом происходит?
  2. К 2-3 каплям р-ра CrCl 3 прибавьте равный объем 8М раствора NaOH и 3-4 капли 3% р-ра H 2 O 2 . Нагрейте реакционную смесь на водяной бане. Что при этом происходит? Какой осадок образуется, если полученный окрашеный раствор нейтрализовать, добавить к нему CH 3 COOH, а затем Pb(NO 3) 2 ?
  3. Налейте в пробирку по 4-5 капель растворов сульфата хрома Cr 2 (SO 4) 3 , IMH 2 SO 4 и KMnO 4 . Нагрейте реакционную смест в течение нескольких минут на водяной бане. Обратите внимание на изменение окраски раствора. Чем оно вызвано?
  4. К 3-4 каплям подкисленного азотной кислотой раствора K 2 Cr 2 O 7 прибавьте 2-3 капли раствора H 2 O 2 и перемешайте. Появляющиеся синее окрашивание раствора обусловлено возникновением надхромовой кислоты H 2 CrO 6:

Cr 2 O 7 2- + 4H 2 O 2 + 2H + = 2H 2 CrO 6 + 3H 2 O

Обратите внимание на на быстрое разложение H 2 CrO 6:

2H 2 CrO 6 + 8H+ = 2Cr 3+ + 3O 2 + 6H 2 O
синий цвет зеленый цвет

Надхромовая кислота значительно более устойчива в органических растворителях.

  1. К 3-4 каплям подкисленного азотной кислотой раствора K 2 Cr 2 O 7 прибавьте 5 капель изоамилового спирта, 2-3 капли раствора H 2 O 2 и взболтайте реакционную смесь. Всплывающий на верх слой органического растворителя окрашен в ярко-синий цвет. Окраска исчезает очень медленно. Сравните устойчивость H 2 CrO 6 в органической и водных фазах.
  2. При взаимодействии CrO 4 2- и ионами Ba 2+ выпадает желтый осадок хромата бария BaCrO 4 .
  3. Нитрат серебра образует с ионами CrO 4 2- осадок хромата серебра кирпично-красного цвета.
  4. Возьмите три пробирки. В одну из них поместите 5- 6 капель раствора K 2 Cr 2 O 7 , во вторую – такой же объем раствора K 2 CrO 4 , а в третью – по три капли обоих растворов. Затем добавте в каждую пробирку по три капли раствора иодида калия. Объясните полученный результат. Подкислите раствор во второй пробирке. Что при этом происходит? Почему?

Занимательные опыты с соединениями хрома

  1. Смесь CuSO 4 и K 2 Cr 2 O 7 при добавлении щелочи становится зеленой, а в присутствии кислоты становится желтой. Нагревая 2мг глицерина с небольшим количеством (NH 4) 2 Cr 2 O 7 с последующим добавлением спирта, после фильтрования получается ярко-зеленый раствор, который при добавлении кислоты становится желтым, а в нейтральной или щелочной среде становится зеленым.
  2. Поместить в центр консервной банки с термитом «рубиновую смесь» - тщательно растертый и помещенный в алюминиевую фольгу Al 2 O 3 (4,75г) с добавкой Cr 2 O 3 (0,25г). Чтобы банка подольше не остывала, необходимо закопать под верхний обрез в песок, а после поджигания термита и начала реакции, накрыть ее железным листом и засыпать песком. Банку выкопать через сутки. В итоге образуется красно – рубиновый порошок.
  3. 10г бихромата калия растирают с 5г нитрата натрия или калия и 10г сахара. Смесь увлажняют и смешивают с коллодием. Если порошок спрессовать в стеклянной трубке, а затем вытолкнуть палочку и поджечь ее с торца, то начнет выползать «змея», сначала черная, а после охлаждения - зеленая. Палочка диаметром 4 мм горит со скоростью около 2мм в секунду и удлиняется в 10 раз.
  4. Если смешать растворы сульфата меди и дихромата калия и добавить немного раствора аммиака, то выпадет аморфный коричневый осадок состава 4СuCrO 4 * 3NH 3 * 5H 2 O, который растворяется в соляной кислоте с образованием желтого раствора, а в избытке аммиака получается зеленый раствор. Если далее к этому раствору добавить спирт, то выпадет зеленый осадок, который после фильтрации становится синим, а после высушивания – сине-фиолетовым с красными блестками, хорошо видимыми при сильном освещении.
  5. Оставшийся после опытов «вулкан» или «фараоновы змеи» оксид хрома можно регенерировать. Для этого надо сплавить 8г Cr 2 O 3 и 2г Na 2 CO 3 и 2,5г KNO 3 и обработать остывший сплав кипятком. Получается растворимый хромат, который можно превратить и в другие соединения Cr(II) и Cr(VI), в том числе и исходный дихромат аммония.

Примеры окислительно – восстановительных переходов с участием хрома и его соединений

1. Cr 2 O 7 2- -- Cr 2 O 3 -- CrO 2 - -- CrO 4 2- -- Cr 2 O 7 2-

a) (NH 4) 2 Cr 2 O 7 = Cr 2 O 3 + N 2 + 4H 2 Oб) Cr 2 O 3 + 2NaOH = 2NaCrO 2 + H 2 O
в) 2NaCrO 2 + 3Br 2 + 8NaOH = 6NaBr +2Na 2 CrO 4 + 4H 2 O
г) 2Na 2 CrO 4 + 2HCl = Na 2 Cr 2 O 7 + 2NaCl + H 2 O

2. Cr(OH) 2 -- Cr(OH) 3 -- CrCl 3 -- Cr 2 O 7 2- -- CrO 4 2-

а) 2Cr(OH) 2 + 1/2O 2 + H 2 O = 2Cr(OH) 3
б) Cr(OH) 3 + 3HCl = CrCl 3 + 3H 2 O
в) 2CrCl 3 + 2KMnO 4 + 3H 2 O = K 2 Cr 2 O 7 + 2Mn(OH) 2 + 6HCl
г) K 2 Cr 2 O 7 + 2KOH = 2K 2 CrO 4 + H 2 O

3. CrO -- Cr(OH) 2 -- Cr(OH) 3 -- Cr(NO 3) 3 -- Cr 2 O 3 -- CrO - 2
Cr 2+

а) CrO + 2HCl = CrCl 2 + H 2 O
б) CrO + H 2 O = Cr(OH) 2
в) Cr(OH) 2 + 1/2O 2 + H 2 O = 2Cr(OH) 3
г) Cr(OH) 3 + 3HNO 3 = Cr(NO 3) 3 + 3H 2 O
д) 4Сr(NO 3) 3 = 2Cr 2 O 3 + 12NO 2 + O 2
е) Cr 2 O 3 + 2 NaOH = 2NaCrO 2 + H 2 O

Элемент хром в роли художника

Химики довольно часто обращались к проблеме создания искусственных пигментов для живописи. В XVIII-XIXвв была разработана технология получения многих живописных материалов. Луи Никола Воклен в 1797г., обнаруживший в сибирской красной руде ранее неизвестный элемент хром, приготовил новую, замечательно устойчивую краску – хромовую зелень. Хромофором ее является водный оксид хрома (III). Под названием « изумрудная зеленая» ее начали выпускать в 1837 году. Позже Л.Вокелен предложил несколько новых красок: баритовую, цинковую и хромовые желтые. Со временем они были вытеснены более стойкими желтыми, оранжевыми пигментами на основе кадмия.

Зеленая хромовая – самая прочная и светостойкая краска, не поддающаяся воздействию атмосферных газов. Растертая на масле хромовая зелень обладает большой кроющей силой и способна к быстрому высыханию, поэтому с XIX в. ее широко применяют в живописи. Огромное значение она имеет в росписи фарфора. Дело в том, что фарфоровые изделия могут декорироваться как подглазурной, так и надглазурной росписью. В первом случае краски наносят на поверхность лишь слегка обожженного изделия, которое затем покрывают слоем глазури. Далее следует основной, высокотемпературный обжиг: для спекания фарфоровой массы и оплавления глазури изделия нагревают до 1350 – 1450 0 С. Столь высокую температуру без химических изменений выдерживают очень немногие краски, а в старину таких вообще было только две – кобальтовая и хромовая. Черный оксид кобальта, нанесенный на поверхность фарфорового изделия, при обжиге сплавляется с глазурью, химически взаимодействуя с ней. В результате образуются ярко-синие силикаты кобальта. Такую декарированную кобальтом синюю фарфоровую посуду все хорошо знают. Оксид хрома (III) не взаимодействует химически с компонентами глазури и просто залегает между фарфоровыми черепками и прозрачной глазурью «глухим» слоем.

Помимо хромовой зелени художники применяют краски, полученные из волконскоита. Этот минерал из группы монтмориллонитов (глинистый минерал подкласса сложных силикатов Na(Mo,Al), Si 4 O 10 (OH) 2 был обнаружен в 1830г. русским минералогом Кеммерером и назван в честь М.Н Волконской – дочери героя битвы при Бородино генерала Н.Н. Раевского, жены декабриста С.Г.Волконского. Волконскоит представляет собой глину, содержащую до 24% оксида хрома, а так же оксиды аллюминея и железа (III). Непостоянство состава минерала, встечающегося на Урале, в Пермской и Кировской областях, обусловливает его разнообразную окраску – от цвета зимней потемневшей пихты до ярко-зеленого цвета болотной лягушки.

Пабло Пикассо обращался к геологам нашей страны с просьбой изучить запасы волконскоита, дающего краску неповторимо свежего тона. В настоящее время разработан способ получения искусственного волконскоита. Интересно отметить, что по данным современных исследований, русские иконописцы использовали краски из этого материала еще в средние века, задолго до его «официального» открытия. Известной популярностью пользовалась у художников и зелень Гинье (создана в 1837г.), хромоформ которой является гидрат окиси хрома Cr 2 O 3 * (2-3) H 2 O, где часть воды химически связана, а часть адсорбирована. Этот пигмент придает краске изумрудный оттенок.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Хром

Элемент №24. Один из самых твердых металлов. Обладает высокой химической стойкостью. Один из важнейших металлов, используемых в производстве легированных сталей. Большинство соединений хрома имеет яркую окраску, причем самых разных цветов. За эту особенность элемент и был назван хромом, что в переводе с греческого означает «краска».

Как его нашли

Минерал, содержащий хром, был открыт близ Екатеринбурга в 1766 г. И.Г. Леманном и назван «сибирским красным свинцом». Сейчас этот минерал называется крокоитом. Известен и его состав – РbCrО4. А в свое время «сибирский красный свинец» вызвал немало разногласий среди ученых. Тридцать лет спорили о его составе, пока, наконец, в 1797 г. французский химик Луи Никола Воклен не выделил из него металл, который (тоже, кстати, после некоторых споров) назвали хромом.

Воклен обработал крокоит поташем К2 CO3: хромат свинца превратился в хромат калия. Затем с помощью соляной кислоты хромат калия был превращен в окись хрома и воду (хромовая кислота существует только в разбавленных растворах). Нагрев зеленый порошок окиси хрома в графитовом тигле с углем, Воклен получил новый тугоплавкий металл.

Парижская академия наук по всей форме засвидетельствовала открытие. Но, скорее всего, Воклен выделил не элементарный хром, а его карбиды. Об этом свидетельствует иглообразная форма полученных Вокленом светлосерых кристаллов.

Название «хром» предложили друзья Воклена, но оно ему не понравилось – металл не отличался особым цветом. Однако друзьям удалось уговорить химика, ссылаясь на то, что из ярко окрашенных соединений хрома можно получать хорошие краски. (Кстати, именно в работах Воклена впервые объяснена изумрудная окраска некоторых природных силикатов бериллия и алюминия; их, как выяснил Воклен, окрашивали примеси соединений хрома.) Так и утвердилось за новым элементом это название.

Между прочим, слог «хром», именно в смысле «окрашенный», входит во многие научные, технические и даже музыкальные термины. Широко известны фотопленки «изопанхром», «панхром» и «ортохром». Слово «хромосома» в переводе с греческого означает «тело, которое окрашивается». Есть «хроматическая» гамма (в музыке) и есть гармоника «хромка».

Где он находится

В земной коре хрома довольно много – 0,02%. Основной минерал, из которого промышленность получает хром, – это хромовая шпинель переменного состава с общей формулой (Mg, Fe) О · (Сr, Al, Fе)2 O3. Хромовая руда носит название хромитов или хромистого железняка (потому, что почти всегда содержит и железо). Залежи хромовых руд есть во многих местах. Наша страна обладает огромными запасами хромитов. Одно из самых больших месторождений находится в Казахстане, в районе Актюбинска; оно открыто в 1936 г. Значительные запасы хромовых руд есть и на Урале.

Хромиты идут большей частью на выплавку феррохрома. Это – один из самых важных ферросплавов, абсолютно необходимый для массового производства легированных сталей.

Ферросплавы – сплавы железа с другими элементами, применяемыми главным обрядом для легирования и раскисления стали. Феррохром содержит не менее 60% Cr.

Царская Россия почти не производила ферросплавов. На нескольких доменных печах южных заводов выплавляли низкопроцентные (по легирующему металлу) ферросилиций и ферромарганец. Да еще на реке Сатке, что течет на Южном Урале, в 1910 г. был построен крошечный заводик, выплавлявший мизерные количества ферромарганца и феррохрома.

Молодой Советской стране в первые годы развития приходилось ввозить ферросплавы из-за рубежа. Такая зависимость от капиталистических стран была недопустимой. Уже в 1927...1928 гг. началось сооружение советских ферросплавных заводов. В конце 1930 г. была построена первая крупная ферросплавная печь в Челябинске, а в 1931 г. вступил в строй Челябинский завод – первенец ферросплавной промышленности СССР. В 1933 г. были пущены еще два завода – в Запорожье и Зестафони. Это позволило прекратить ввоз ферросплавов. Всего за несколько лет в Советском Союзе было организовано производство множества видов специальных сталей – шарикоподшипниковой, жароупорной, нержавеющей, автотракторной, быстрорежущей… Во все эти стали входит хром.

На XVII съезде партии нарком тяжелой промышленности Серго Орджоникидзе говорил: «… если бы у нас не было качественных сталей, у нас не было бы автотракторной промышленности. Стоимость расходуемых нами сейчас качественных сталей определяется свыше 400 млн руб. Если бы надо было ввозить, это – 400 млн руб. ежегодно, вы бы, черт побери, в кабалу попали к капиталистам...»

Завод на базе Актюбинского месторождения построен позже, в годы Великой Отечественной войны. Первую плавку феррохрома он дал 20 января 1943 г. В сооружении завода принимали участие трудящиеся города Актюбинска. Стройка была объявлена народной. Феррохром нового завода шел на изготовление металла для танков и пушек, для нужд фронта.

Прошли годы. Сейчас Актюбинский ферросплавный завод – крупнейшее предприятие, выпускающее феррохром всех марок. На заводе выросли высококвалифицированные национальные кадры металлургов. Из года в год завод и хромитовые рудники наращивают мощность, обеспечивая нашу черную металлургию высококачественным феррохромом.

В нашей стране есть уникальное месторождение природнолегированных железных руд, богатых хромом и никелем. Оно находится в оренбургских степях. На базе этого месторождения построен и работает Орско-Халиловский металлургический комбинат. В доменных печах комбината выплавляют природнолегированный чугун, обладающий высокой жароупорностью. Частично его используют в виде литья, но большую часть отправляют на передел в никелевую сталь; хром при выплавке стали из чугуна выгорает.

Большими запасами хромитов располагают Куба, Югославия, многие страны Азии и Африки.

Как его получают

Хромит применяется преимущественно в трех отраслях промышленности: металлургии, химии и производстве огнеупоров, причем металлургия потребляет примерно две трети всего хромита.

Сталь, легированная хромом, обладает повышенной прочностью, стойкостью против коррозии в агрессивных и окислительных средах.

Получение чистого хрома – дорогой и трудоемкий процесс. Поэтому для легирования стали применяют главным образом феррохром, который получают в дуговых электропечах непосредственно из хромита. Восстановителем служит кокс. Содержание окиси хрома в хромите должно быть не ниже 48%, а отношениеCr: Fe не менее 3: 1.

Полученный в электропечи феррохром обычно содержит до 80% хрома и 4...7% углерода (остальное – железо).

Но для легирования многих качественных сталей нужен феррохром, содержащий мало углерода (о причинах этого – ниже, в главе «Хром в сплавах»). Поэтому часть высокоуглеродистого феррохрома подвергают специальной обработке, чтобы снизить содержание углерода в нем до десятых и сотых долей процента.

Из хромита получают и элементарный, металлический хром. Производство технически чистого хрома (97...99%) основано на методе алюминотермии, открытом еще в 1865 г. известным русским химиком Н.Н. Бекетовым. Сущность метода – в восстановлении окислов алюминием, реакция сопровождается значительным выделением тепла.

Но предварительно надо получить чистую окись хрома Сr2 О3. Для этого тонко измельченный хромит смешивают с содой и добавляют к этой смеси известняк или окись железа. Вся масса обжигается, причем образуется хромат натрия:

2Сr2 О3 + 4Na2 CO3 + 3О2 → 4Na2 CrO4 + 4CO2 .

Затем хромат натрия выщелачивают из обожженной массы водой; щелок фильтруют, упаривают и обрабатывают кислотой. В результате получается бихромат натрия Na2 Cr2 O7. Восстанавливая его серой или углеродом при нагревании, получают зеленую окись хрома.

Металлический хром можно получить, если чистую окись хрома смешать с порошком алюминия, нагреть эту смесь в тигле до 500...600°C и поджечь с помощью перекиси бария, Алюминий отнимает у окиси хрома кислород. Эта реакция Сr2 О3 + 2Аl → Аl2 O3 + 2Сr – основа промышленного (алюминотермического) способа получения хрома, хотя, конечно, заводская технология значительно сложнее. Хром, полученный алюминотермически, содержит алюминия и железа десятые доли процента, а кремния, углерода и серы – сотые доли процента.

Используют также силикотермический способ получения технически чистого хрома. В этом случае хром из окиси восстанавливается кремнием по реакции

2Сr2 О3 + 3Si → 3SiO2 + 4Сr.

Эта реакция происходит в дуговых печах. Для связывания кремнезема в шихту добавляют известняк. Чистота силикотермического хрома примерно такая же, как и алюминотермического, хотя, разумеется, содержание в нем кремния несколько выше, а алюминия несколько ниже. Для получения хрома пытались применить и другие восстановители – углерод, водород, магний. Однако эти способы не получили широкого распространения.

Хром высокой степени чистоты (примерно 99,8%) получают электролитически.

Технически чистый и электролитический хром идет главным образом на производство сложных хромовых сплавов.

Константы и свойства хрома

Атомная масса хрома 51,996. В менделеевской таблице он занимает место в шестой группе. Его ближайшие соседи и аналоги – молибден и вольфрам. Характерно, что соседи хрома, так же как и он сам, широко применяются для легирования сталей.

Температура плавления хрома зависит от его чистоты. Многие исследователи пытались ее определить и получили значения от 1513 до 1920°C. Такой большой «разброс» объясняется прежде всего количеством и составом содержащихся в хроме примесей. Сейчас считают, что хром плавится при температуре около 1875°C. Температура кипения 2199°C. Плотность хрома меньше, чем железа; она равна 7,19.

По химическим свойствам хром близок к молибдену и вольфраму. Высший окисел его CrО3 – кислотный, это – ангидрид хромовой кислоты Н2 CrО4. Минерал крокоит, с которого мы начинали знакомство с элементом №24, – соль этой кислоты. Кроме хромовой, известна двухромовая кислота H2 Cr2 O7, в химии широко применяются ее соли – бихроматы. Наиболее распространенный окисел хрома Cr2 О3 – амфотерен. А вообще в разных условиях хром может проявлять валентности от 2 до 6. Широко используются только соединения трех- и шестивалентного хрома.

Хром обладает всеми свойствами металла – хорошо проводит тепло и электрический ток, имеет характерный металлический блеск. Главная особенность хрома – его устойчивость к действию кислот и кислорода.

Для тех, кто постоянно имеет дело с хромом, стала притчей во языцех еще одна его особенность: при температуре около 37°C некоторые физические свойства этого металла резко, скачкообразно меняются. При этой температуре – явно выраженный максимум внутреннего трения и минимум модуля упругости. Почти также резко изменяются электросопротивление, коэффициент линейного расширения, термоэлектродвижущая сила.

Объяснить эту аномалию ученые пока не могут.

Известны четыре природных изотопа хрома. Их массовые числа 50, 52, 53 и 54. Доля самого распространенного изотопа 52 Cr – около 84%

Хром в сплавах

Вероятно, было бы противоестественным, если бы рассказ о применении хрома и его соединений начался не со стали, а с чего-либо иного. Хром – один из самых важных легирующих элементов, применяемых в черной металлургии. Добавка хрома к обычным сталям (до 5% Сr) улучшает их физические свойства и делает металл более восприимчивым к термической обработке. Хромом легируют пружинные, рессорные, инструментальные, штамповые и шарикоподшипниковые стали. В них (кроме шарикоподшипниковых сталей) хром присутствует вместе с марганцем, молибденом, никелем, ванадием. А шарикоподшипниковые стали содержат лишь хром (около 1,5%) и углерод (около 1%). Последний образует с хромом карбиды исключительной твердости: Cr3 С. Cr7 С3 и Cr23 С6. Они придают шарикоподшипниковой стали высокую износостойкость.

Если содержание хрома в стали повысить до 10% и более, сталь становится более стойкой к окислению и коррозии, но здесь вступает в силу фактор, который можно назвать углеродным ограничением. Способность углерода связывать большие количества хрома приводит к обеднению стали этим элементом. Поэтому металлурги оказываются перед дилеммой: хочешь получить коррозионную стойкость – уменьшай содержание углерода и теряй на износостойкости и твердости.

Нержавеющая сталь самой распространенной марки содержит 18% хрома и 8% никеля. Содержание углерода в ней очень невелико – до 0,1%. Нержавеющие стали хорошо противостоят коррозии и окислению, сохраняют прочность при высоких температурах. Из листов такой стали сделана скульптурная группа В.И. Мухиной «Рабочий и колхозница», которая установлена в Москве у Северного входа на Выставку достижений народного хозяйства. Нержавеющие стали широко используются в химической и нефтяной промышленности.

Высокохромистые стали (содержащие 25...30% Cr) обладают особой стойкостью к окислению при высокой температуре. Их применяют для изготовления деталей нагревательных печей.

Теперь несколько слов о сплавах на основе хрома. Это сплавы, содержащие более 50% хрома. Они обладают весьма высокой жаропрочностью. Однако у них есть очень большой недостаток, сводящий на нет все преимущества: эти сплавы очень чувствительны к поверхностным дефектам: достаточно появиться царапине, микротрещине, и изделие быстро разрушится под нагрузкой. У большинства сплавов подобные недостатки устраняются термомеханической обработкой, но сплавы на основе хрома такой обработке не поддаются. Кроме того, они чересчур хрупки при комнатной температуре, что также ограничивает возможности их применения.

Более ценны сплавы хрома с никелем (в них часто вводятся как легирующие добавки и другие элементы). Самые распространенные сплавы этой группы – нихромы содержат до 20% хрома (остальное никель) и применяются для изготовления нагревательных элементов. У нихромов – большое для металлов электросопротивление, при пропускании тока они сильно нагреваются.

Добавка к хромоникелевым сплавам молибдена и кобальта позволяет получить материалы, обладающие высокой жаропрочностью, способностью выносить большие нагрузки при 650...900°C. Из этих сплавов делают, например, лопатки газовых турбин.

Жаропрочностью, обладают также хромокобальтовые сплавы, содержащие 25...30% хрома. Промышленность использует хром и как материал для антикоррозионных и декоративных покрытий.

Главная хромовая руда – хромит используется и в производстве огнеупоров. Магнезитохромитовые кирпичи химически пассивны и термостойки, они выдерживают многократные резкие изменения температур. Поэтому их используют в конструкциях сводов мартеновских печей. Стойкость магнезитохромитовых сводов в 2...3 раза больше, чем динасовых.

Динас – кислый огнеупорный кирпич, содержащий не меньше 93% кремнезема. Огнеупорность динаса 1680...1730°C. В вышедшем в 1952 г. 14-м томе Большой Советской Энциклопедии (2-е издание) динас назван незаменимым материалом для сводов мартеновских печей. Это утверждение следует считать устаревшим, хотя динас и сейчас широко применяется в качество огнеупора.

Химики получают из хромита в основном бихроматы калия и натрия К2 Cr2 O7 и Na2 Cr2 O7 .

Бпхроматы и хромовые квасцы KCr(SO4); применяются для дубления кожи. Отсюда и идет название «хромовые» сапоги. Кожа. дубленная хромовыми соединениями, обладает красивым блеском, прочна и удобна в использовании.

Из хромата свинца РbCrО4. изготовляют различные красители. Раствором бихромата натрия очищают и травят поверхность стальной проволоки перед цинкованием, а также осветляют латунь. Хромит и другие соединения хрома широко применяются в качестве красителей керамической глазури и стекла.

Наконец, из бихромата натрия получают хромовую кислоту, которая используется в качестве электролита при хромировании металлических деталей.

Хром и в будущем сохранит свое значение как легирующая добавка к стали и как материал для металлопокрытий; не утратят ценности и соединения хрома, используемые в химической и огнеупорной промышленности.

Гораздо сложнее обстоит дело со сплавами на основе хрома. Большая хрупкость и исключительная сложность механической обработки пока не позволяют широко применять эти сплавы, хотя по жаропрочности и износостойкости они могут потягаться с любыми материалами. В последние годы наметилось новое направление в производстве хромсодержащих сплавов – легирование их азотом. Этот обычно вредный в металлургии газ образует с хромом прочные соединения – нитриды. Азотирование хромистых сталей повышает их износостойкость, позволяет уменьшить содержание дефицитного никеля в «нержавейках». Быть может, этот метод позволит преодолеть и «необрабатываемость» сплавов на основе хрома? Или здесь придут на помощь другие, пока не известные методы? Так или иначе, надо думать, что в будущем эти сплавы займут достойное место среди нужных технике материалов.

Три или шесть?

Поскольку хром хорошо сопротивляется окислению на воздухе и действию кислот, его часто наносят на поверхность других материалов, чтобы защитить их от коррозии. Метод нанесения давно известен – это электролитическое осаждение. Однако на первых порах при разработке процесса электролитического хромирования возникли неожиданные трудности.

Известно, что обычные гальванические покрытия наносят с помощью электролитов, в которых ион наносимого элемента имеет положительный заряд. С хромом так не получалось: покрытия оказывались пористыми, легко отслаивались.

Почти три четверти века работали ученые над проблемой хромирования и только в 20-х годах нашего века нашли, что электролит хромированной ванны должен содержать не трехвалентный хром, а хромовую кислоту, т.е. шестивалентный хром. При промышленном хромировании в ванну добавляют соли серной и плавиковой кислот; свободные кислотные радикалы катализируют процесс гальванического осаждения хрома.

Ученые не пришли пока к единому мнению о механизме осаждения шестивалентного хрома на катоде гальванической ванны. Есть предположение, что шестивалентный хром переходит сначала в трехвалентный, а затем уже восстанавливается до металла. Однако большинство специалистов сходится на том, что хром у катода восстанавливается сразу из шестивалентного состояния. Некоторые ученые считают, что в этом процессе участвует атомарный водород, некоторые – что шестивалентный хром просто получает шесть электронов.

Декоративные и твердые

Хромовые покрытия бывают двух видов: декоративные и твердые. Чаще приходится сталкиваться с декоративными: на часах, дверных ручках и других предметах. Здесь слой хрома наносится на подслой другого металла, чаще всего никеля или меди. Сталь защищена от коррозии этим подслоем, а тонкий (0,0002...0,0005 мм.) слой хрома придает изделию парадный вид.

Твердые покрытия построены иначе. Хром наносят на сталь значительно более толстым слоем (до 0,1 мм), но без подслоев. Такие покрытия повышают твердость и износостойкость стали, а также уменьшают коэффициент трения.

Хромирование без электролита

Есть и другой способ нанесения хромовых покрытий – диффузионный. Этот процесс идет не в гальванических ваннах, а в печах.

Стальную деталь помещают в порошок хрома и нагревают в восстановительной атмосфере. За 4 часа при температуре 1300°C на поверхности детали образуется обогащенный хромом слой толщиной 0,08 мм. Твердость и коррозийная стойкость этого слоя значительно больше, чем твердость стали в массе детали. Но этот, казалось бы, простой метод приходилось неоднократно совершенствовать. На поверхности стали образовывались карбиды хрома, которые препятствовали диффузии хрома в сталь. Кроме того, порошок хрома при температуре порядка тысячи градусов спекается. Чтобы этого не случилось, к нему примешивают порошок нейтрального огнеупора. Попытки заменить порошок хрома смесью окиси хрома с углем не дали положительных результатов.

Более жизненным оказалось предложение применять в качестве носителя хрома его летучие галоидные соли, например CrCl2. Горячий газ омывает хромируемое изделие, при этом идет реакция:

СrСl2 + Fe ↔ FeСl2 + Сr.

Использование летучих галоидных солей позволило снизить температуру хромирования.

Хлорид (или иодид) хрома получают обычно в самой установке для хромирования, пропуская пары соответствующей галоидоводородной кислоты через порошкообразный хром или феррохром. Образовавшийся газообразный хлорид омывает хромируемое изделие.

Процесс длится долго – несколько часов. Нанесенный таким образом слой гораздо крепче соединен с основным материалом, чем нанесенный гальванически.

Все началось с мытья посуды...

В любой аналитической лаборатории стоит большая бутыль с темной жидкостью. Это «хромовая смесь» – смесь насыщенного раствора бихромата калия с концентрированной серной кислотой. Зачем она нужна?

На пальцах человека всегда есть жировые загрязнения, которые легко переходят на стекло. Именно эти отложения призвана смывать хромовая смесь. Она окисляет жир и удаляет его остатки. Но с этим веществом обращаться надо осторожно. Несколько капель хромовой смеси, попавшие на костюм, способны превратить его в подобие решета: в смеси два вещества, и оба «разбойники» – сильная кислота и сильный окислитель.

Хром и древесина

Даже в наш век стекла, алюминия, бетона и пластиков нельзя не признать древесину отличным строительным материалом. Главное ее достоинство в простоте обработки, а главные недостатки – в пожароопасности, подверженности разрушению грибками, бактериями, насекомыми. Древесину можно сделать более стойкой, пропитав ее специальными растворами, в состав которых обязательно входят хроматы и бихроматы плюс хлорид цинка, сульфат меди, арсенат натрия и некоторые другие вещества. Пропитка во много раз увеличивает стойкость древесины к действию грибков, насекомых, пламени.

Глядя на рисунок

Иллюстрации в печатных изданиях делаются с клише – металлических пластинок, на которых этот рисунок (вернее, его зеркальное отражение) выгравирован химическим способом или вручную. До изобретения фотографии клише гравировали только вручную; это трудоемкая работа, требующая большого мастерства.

Но еще в 1839 г. произошло открытие, казавшееся не имевшим никакого отношения к полиграфии. Было установлено, что бумага, пропитанная бихроматом натрия или калия, после освещения ярким светом становится вдруг коричневой. Затем выяснилось, что бихроматные покрытия на бумаге после засвечивания не растворяются в воде, а, будучи смоченными, приобретают синеватый оттенок. Этим свойством воспользовались полиграфисты. Нужный рисунок фотографировали на пластинку с коллоидным покрытием, содержащим бихромат. Засвеченные места при промывке не растворялись, а незасвеченные растворялись, и на пластине оставался рисунок, с которого можно было печатать.

Сейчас в полиграфии используют другие светочувствительные материалы, применение бихроматных гелей сокращается. Но не стоит забывать, что «первопроходцам» фотомеханического метода в полиграфии помог хром.



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама