THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Паровой двигатель

Сложность изготовления: ★★★★☆

Время изготовления: Один день

Подручные материалы: ████████░░ 80%


В этой статье я расскажу вам о том, как сделать паровой двигатель своими руками. Двигатель будет небольшой, однопоршневой с золотником. Мощности вполне хватит, чтобы вращать ротор небольшого генератора и использовать этот двигатель в качестве автономного источника электричества в походах.


  • Телескопическая антенна (можно снять со старого телевизора или радиоприёмника), диаметр самой толстой трубки должен составлять не менее 8 мм
  • Маленькая трубка для поршневой пары (магазин сантехники).
  • Медная проволока с диаметром около 1,5 мм (можно найти в катушке трансформатора или радиомагазине).
  • Болты, гайки, шурупы
  • Свинец (в рыболовном магазине или найти в старом автомобильном аккумуляторе). Он нужен, чтобы отлить маховик в форме. Я нашёл готовый маховик, но вам этот пункт может пригодиться.
  • Деревянные бруски.
  • Спицы для велосипедных колёс
  • Подставка (в моём случае из листа текстолита толщиной 5 мм, но подойдёт и фанера).
  • Деревянные бруски (куски досок)
  • Банка из под оливок
  • Трубка
  • Суперклей, холодная сварка, эпоксидная смола (стройрынок).
  • Наждак
  • Дрель
  • Паяльник
  • Ножовка

    Как сделать паровой двигатель


    Схема двигателя


    Цилиндр и золотниковая трубка.

    Отрезаем от антенны 3 куска:
    ? Первый кусок 38 мм длиной и 8 мм диаметром (сам цилиндр).
    ? Второй кусок длиной 30 мм и 4 мм диаметром.
    ? Третий длиной 6 мм и 4 мм диаметром.


    Возьмём трубку №2 и сделаем в ней отверстие диаметром 4 мм посередине. Возьмем трубку №3 и приклеим перпендикулярно трубке №2, после высыхания суперклея, замажем все холодной сваркой (например POXIPOL).


    Крепим круглую железную шайбу с отверстием посредине к куску №3 (диаметр - чуть больше трубки №1), после высыхания укрепляем холодной сваркой.

    Дополнительно покрываем все швы эпоксидной смолой для лучшей герметичности.

    Как сделать поршень с шатуном

    Берём болт (1) диаметром 7 мм и зажимаем его в тисках. Начинаем наматывать на него медную проволоку (2) примерно на 6 витков. Каждый виток промазываем суперклеем. Лишние концы болта спиливаем.


    Проволоку покрываем эпоксидкой. После высыхания, подгоняем поршень шкуркой под цилиндр так, чтобы он свободно там двигался, не пропуская воздух.


    Из листа алюминия делаем полоску длиной 4 мм и длиной 19 мм. Придаём ей форму буквы П (3).


    Сверлим на обоих концах отверстия (4) 2 мм диаметром, чтобы можно было засунуть кусочек спицы. Стороны П-образной детали должны быть 7х5х7 мм. Клеим её к поршню стороной, которая 5 мм.



    Шатун (5) делаем из велосипедной спицы. К обоим концам спицы приклеиваем на два маленьких кусочка трубок (6) от антенны диаметром и длиной по 3 мм. Расстояние между центрами шатуна составляет 50 мм. Далее шатун одним концом вставляем в П-образную деталь и шарнирно фиксируем спицей.

    Спицу с двух концов подклеиваем, чтобы не выпала.


    Шатун треугольника

    Шатун треугольника делается похожим способом, только с одной стороны будет кусок спицы, а с другой трубка. Длина шатуна 75 мм.


    Треугольник и золотник


    Из листа металла вырезаем треугольник и сверлим сверлим в нем 3 отверстия.
    Золотник. Длина поршня золотника составляет 3,5 мм, и он должен свободно перемещаться по трубке золотника. Длина штока зависит от размеров вашего маховика.



    Кривошип поршневой тяги должен быть 8 мм, а кривошип золотника - 4 мм.
  • Паровой котёл


    Паровым котлом будет служить банка из под оливок с запаянной крышкой. Также я впаял гайку, чтобы через неё можно было заливать воду и герметично закручивать болтом. Также припаял трубку к крышке.
    Вот фото:


    Фото двигателя в сборе


    Собираем двигатель на деревянной платформе, размещая каждый элемент на подпорке





    Видео работы парового двигателя



  • Версия 2.0


    Косметическая доработка двигателя. Бак теперь имеет свою собственную деревянную площадку и блюдце для таблетки сухого горючего. Все детали покрашены в красивые цвета. Кстати в качестве источника тепла лучше всего использовать самодельную

Я живу только на угле и воде и все еще обладаю достаточной энергией, чтобы разогнаться до 100 миль в час! Это именно то, что может сделать паровоз. Хотя эти гигантские механические динозавры в настоящее время вымерли на большей части мировых железных дорог, паровые технологии живут в сердцах людей, и локомотивы, подобные этому, до сих пор служат туристическими достопримечательностями на многих исторических железных дорогах.

Первое современные паровые машины были изобретены в Англии в начале 18 века и ознаменовали начало Промышленной Революции.

Сегодня мы вновь возвращаемся к энергии пара. Из-за особенностей конструкции в процессе сгорания топлива паровой двигатель дает меньше загрязнений, чем двигатель внутреннего сгорания. В данной публикации на видео посмотрите, как он работает.

Что питало старинный паровой двигатель?

Требуется энергия, чтобы делать абсолютно все, о чем вы только можете подумать: кататься на скейтборде, летать на самолете, ходить в магазины или водить машину по улице. Большая часть энергии, которую мы используем для транспортировки сегодня, поступает из нефти, но это было не всегда так. До начала 20-го века уголь был любимым топливом в мире, и он приводил в движение все: от поездов и кораблей до злополучных паровых самолетов, изобретенных американским ученым Сэмюэлем П. Лэнгли, ранним конкурентом братьев Райт. Что такого особенного в угле? Внутри Земли его много, поэтому он был относительно недорогим и широко доступным.

Уголь является органическим химическим веществом, что означает, что он основан на элементе углерода. Уголь образуется в течение миллионов лет, когда останки мертвых растений закапывают под камнями, сжимают под давлением и варят под действием внутреннего тепла Земли. Вот почему это называется ископаемое топливо. Комки угля – это действительно комки энергии. Углерод внутри них связан с атомами водорода и кислорода соединениями, называемыми химическими связями. Когда мы сжигаем уголь на огне, связи распадаются, и энергия выделяется в форме тепла.

Уголь содержит примерно вдвое меньше энергии на килограмм, чем более чистое ископаемое топливо, такое как бензин, дизельное топливо и керосин – и это одна из причин, по которой паровые двигатели должны сжигать так много.

Готовы ли паровые машины к эпическому возвращению?

Когда-то давно господствовал паровой двигатель – сначала в поездах и тяжелых тракторах, как вы знаете, но в конечном итоге и в автомобилях. Сегодня это трудно понять, но на рубеже 20-го века более половины автомобилей в США работали на парах. Паровой двигатель был настолько усовершенствован, что в 1906 году паровая машина под названием «Ракета Стэнли» даже имела рекорд скорости на земле – опрометчивая скорость 127 миль в час!

Теперь вы можете подумать, что паровая машина имела успех только потому, что двигатели внутреннего сгорания (ДВС) еще не существовали, но на самом деле паровые машины и автомобили ДВС были разработаны одновременно. Поскольку у инженеров уже был 100-летний опыт работы с паровыми двигателями, у паровой машины был довольно большой старт. В то время как ручные коленчатые двигатели ломали руки несчастных операторов, к 1900 году паровые машины были уже полностью автоматизированы – и без сцепления или коробки передач (пар обеспечивает постоянное давление, в отличие от хода поршня ДВС), очень легким в управлении. Единственное предостережение, что вы должны были подождать несколько минут, чтобы котел нагрелся.

Однако через несколько коротких лет Генри Форд придет и все изменит. Хотя паровой двигатель технически превосходил ДВС, он не мог сравниться с ценой серийных Фордов. Производители паровых автомобилей пытались переключать передачи и продавать свои автомобили как премиальные, роскошные продукты, но к 1918 году Ford Model T был в шесть раз дешевле, чем Steanley Steamer (самая популярная паровая машина в то время). С появлением электродвигателя стартера в 1912 году и постоянным повышением эффективности ДВС прошло совсем немного времени, пока паровая машина исчезла с наших дорог.

Под давлением

В течение последних 90 лет паровые машины оставались на грани исчезновения, а гигантские звери выкатывались на показы старинных автомобилей, но не намного. Спокойно, однако, на заднем плане исследования незаметно продвигались вперед – отчасти из-за нашей зависимости от паровых турбин в производстве электроэнергии, а также потому, что некоторые люди считают, что паровые двигатели действительно могут превосходить двигатели внутреннего сгорания.

ДВС имеют внутренние недостатки: им требуется ископаемое топливо, они производят много загрязнений, и они шумные. Паровые двигатели, напротив, очень тихие, очень чистые и могут использовать практически любое топливо. Паровые двигатели благодаря постоянному давлению не требуют зацепления – вы получаете максимальный крутящий момент и ускорение мгновенно, в состоянии покоя. Для городского вождения, где остановка и запуск потребляют огромное количество ископаемого топлива, непрерывная мощность паровых двигателей может быть очень интересной.

Технологии прошли долгий путь и с 1920-х годов – в первую очередь, мы теперь мастера материалов . Оригинальным паровым машинам требовались огромные, тяжелые котлы, чтобы выдерживать жару и давление, и в результате даже небольшие паровые машины весили пару тонн. С современными материалами паровые машины могут быть такими же легкими, как их двоюродные братья. Добавьте современный конденсатор и какой-нибудь котел-испаритель, и вы сможете построить паровую машину с приличной эффективностью и временем прогрева, которое измеряется секундами, а не минутами.

В последние годы эти достижения объединились в некоторые захватывающие события. В 2009 году британская команда установила новый рекорд скорости ветра на паровой тяге в 148 миль в час, наконец, побив рекорд ракеты Стэнли, который стоял более 100 лет. В 1990-х годах подразделение Volkswagen R & D под названием Enginion заявило, что оно построило паровой двигатель, который был сопоставим по эффективности с ДВС, но с меньшими выбросами. В последние годы Cyclone Technologies утверждает, что она разработала паровой двигатель, который в два раза эффективнее, чем ДВС. На сегодняшний день, однако, ни один двигатель не нашел свой путь в коммерческом автомобиле.

Двигаясь вперед, маловероятно, что паровые машины когда-либо сядут с двигателя внутреннего сгорания, хотя бы из-за огромного импульса Big Oil. Однако однажды, когда мы наконец решим серьезно взглянуть на будущее личного транспорта, возможно, тихая, зеленая, скользящая грация энергии пара получит второй шанс.

Паровые двигатели нашего времени

Технология.

Инновационная энергия. В настоящее время nanoFlowcell® является самой инновационной и самой мощной системой накопления энергии для мобильных и стационарных приложений. В отличие от обычных батарей, nanoFlowcell® снабжается энергией в виде жидких электролитов (bi-ION), которая может храниться вдали от самой ячейки. Выхлоп автомобиля с этой технологией – водяной пар.

Как и обычная проточная ячейка, положительно и отрицательно заряженные электролитические жидкости хранятся отдельно в двух резервуарах и, как и обычная проточная ячейка или топливный элемент, прокачиваются через преобразователь (действительный элемент системы nanoFlowcell) в отдельных контурах.

Здесь две цепи электролита разделены только проницаемой мембраной. Обмен ионов происходит, как только растворы положительного и отрицательного электролитов проходят друг с другом по обе стороны мембраны конвертера. Это преобразует химическую энергию, связанную в би-ион, в электричество, которое затем напрямую доступно для потребителей электроэнергии.


Подобно водородным транспортным средствам, «выхлоп», производимый электромобилями nanoFlowcell, представляет собой водяной пар. Но являются ли выбросы водяного пара от будущих электромобилей экологически чистыми?

Критики электрической мобильности все чаще ставят под сомнение экологическую совместимость и устойчивость альтернативных источников энергии. Для многих автомобильные электроприводы являются посредственным компромиссом вождения с нулевым уровнем выбросов и экологически вредных технологий. Обычные литий-ионные или металлогидридные батареи не являются ни устойчивыми, ни экологически совместимыми – ни в производстве, ни в использовании, ни в переработке, даже если реклама предполагает чистую «электронную мобильность».

nanoFlowcell Holdings также часто задают вопрос об устойчивости и экологической совместимости технологии nanoFlowcell и би-ионных электролитов. И сам nanoFlowcell, и растворы электролитов bi-ION, необходимые для его питания, производятся экологически безопасным способом из экологически чистого сырья. В процессе эксплуатации технология nanoFlowcell полностью нетоксична и никоим образом не наносит вреда здоровью. Би-ИОН, который состоит из слабосолевого водного раствора (органические и минеральные соли, растворенные в воде) и фактических энергоносителей (электролитов), также безопасен для окружающей среды при использовании и переработке.


Как работает привод nanoFlowcell в электромобиле? Подобно бензиновому автомобилю, раствор электролита потребляется в электрическом транспортном средстве с нанофлоуцеллом. Внутри наноотвода (фактической проточной ячейки) один положительно и один отрицательно заряженный раствор электролита прокачивается через клеточную мембрану. Реакция – ионный обмен – имеет место между положительно и отрицательно заряженными растворами электролита. Таким образом, химическая энергия, содержащаяся в би-ионах, выделяется в виде электричества, которое затем используется для привода электродвигателей. Это происходит до тех пор, пока электролиты прокачиваются через мембрану и реагируют. В случае привода QUANTiNO с нанофлоуцеллом одного резервуара с электролитной жидкостью достаточно для более чем 1000 километров. После опустошения бак должен быть пополнен.

Какие “отходы” образуются электрическим транспортным средством с нанофлоуцеллом? В обычном транспортном средстве с двигателем внутреннего сгорания при сжигании ископаемого топлива (бензина или дизельного топлива) образуются опасные выхлопные газы – главным образом, диоксид углерода, оксиды азота и диоксид серы – накопление которых было определено многими исследователями как причина изменения климата. менять. Тем не менее, единственные выбросы, выделяемые транспортным средством nanoFlowcell во время вождения, состоят – почти как транспортное средство, работающее на водороде – почти полностью из воды.

После того, как ионный обмен произошел в наноячейке, химический состав раствора электролита bi-ION практически не изменился. Он больше не является реактивным и, таким образом, считается «потраченным», поскольку его невозможно перезарядить. Поэтому для мобильных применений технологии nanoFlowcell, таких как электромобили, было принято решение микроскопически испарять и высвобождать растворенный электролит во время движения автомобиля. При скорости свыше 80 км / ч емкость для отработанной электролитической жидкости опорожняется через чрезвычайно мелкие распылительные форсунки с использованием генератора, приводимого в движение энергией привода. Электролиты и соли предварительно механически отфильтровываются. Выпуск очищенной в настоящее время воды в виде паров холодной воды (микротонкодисперсный туман) полностью совместим с окружающей средой. Фильтр меняется примерно на 10 г.

Преимущество этого технического решения состоит в том, что бак транспортного средства опустошается при движении в обычном режиме и может быть легко и быстро пополнен без необходимости откачки.

Альтернативное решение, которое является несколько более сложным, состоит в том, чтобы собрать раствор отработанного электролита в отдельном резервуаре и отправить его на переработку. Это решение предназначено для подобных стационарных приложений nanoFlowcell.


Однако сейчас многие критики предполагают, что водяной пар такого типа, который выделяется при конверсии водорода в топливных элементах или в результате испарения электролитической жидкости в случае наноотвода, теоретически является парниковым газом, который может оказать влияние на изменение климата. Как возникают такие слухи?

Мы рассматриваем выбросы водяного пара с точки зрения их экологической значимости и задаем вопрос о том, сколько еще водяного пара можно ожидать в результате широкого использования транспортных средств с нанофлоуцелл по сравнению с традиционными технологиями привода и могут ли эти выбросы H 2 O иметь негативное воздействие на окружающую среду.

Наиболее важные природные парниковые газы – наряду с CH 4 , O 3 и N 2 O – водяной пар и CO 2 , Углекислый газ и водяной пар невероятно важны для поддержания глобального климата. Солнечное излучение, которое достигает земли, поглощается и нагревает землю, которая в свою очередь излучает тепло в атмосферу. Однако большая часть этого излучаемого тепла уходит обратно в космос из земной атмосферы. Углекислый газ и водяной пар обладают свойствами парниковых газов, образуя «защитный слой», который предотвращает утечку всего излучаемого тепла обратно в космос. В естественном контексте этот парниковый эффект имеет решающее значение для нашего выживания на Земле – без углекислого газа и водяного пара атмосфера Земли была бы враждебна для жизни.

Парниковый эффект становится проблематичным только тогда, когда непредсказуемое вмешательство человека нарушает естественный цикл. Когда в дополнение к естественным парниковым газам люди вызывают более высокую концентрацию парниковых газов в атмосфере, сжигая ископаемое топливо, это увеличивает нагрев земной атмосферы.


Являясь частью биосферы, люди неизбежно влияют на окружающую среду и, следовательно, на климатическую систему, самим своим существованием. Постоянный рост численности населения Земли после каменного века и создания поселений несколько тысяч лет назад, связанный с переходом от кочевой жизни к сельскому хозяйству и животноводству, уже повлиял на климат. Почти половина оригинальных лесов и лесов в мире была очищена для сельскохозяйственных целей. Леса – наряду с океанами – главный производитель водяного пара.

Водяной пар является основным поглотителем теплового излучения в атмосфере. Водяной пар составляет в среднем 0,3% по массе атмосферы, углекислый газ – только 0,038%, что означает, что водяной пар составляет 80% массы парниковых газов в атмосфере (около 90% по объему) и, с учетом от 36 до 66% – самый важный парниковый газ, обеспечивающий наше существование на земле.

Таблица 3: Атмосферная доля наиболее важных парниковых газов, а также абсолютная и относительная доля повышения температуры (Циттель)

Интерес к водяному пару, как доступному источнику энергии, появился вместе с первыми научными познаниями древних. Приручить эту энергию люди пытались на протяжении трёх тысячелетий. Каковы основные этапы этого пути? Чьи размышления и проекты научили человечество извлекать из него максимальную пользу?

Предпосылки появления паровых двигателей

Потребность в механизмах, способных облегчить трудоёмкие процессы, существовала всегда. Примерно до середины XVIII века для этой цели использовались ветряные мельницы и водяные колеса. Возможность использования энергии ветра напрямую зависит от капризов погоды. А для использования водяных колёс фабрики приходилось строить по берегам рек, что не всегда удобно и целесообразно. Да и эффективность тех и других была чрезвычайно мала. Нужен был принципиально новый двигатель, легко управляемый и лишённый этих недостатков.

История изобретения и совершенствования паровых двигателей

Создание парового двигателя - результат долгих размышлений, удач и крушений надежд множества учёных.

Начало пути

Первые, единичные проекты были лишь интересными диковинками. Например, Архимед сконструировал паровую пушку, Герон Александрийский использовал энергию пара для открывания дверей античных храмов. А заметки о практическом применении энергии пара для приведения в действие иных механизмов исследователи находят в трудах Леонардо да Винчи.

Рассмотрим наиболее значительные проекты по этой тематике.

В XVI веке арабский инженер Таги аль Дин разработал проект примитивной паровой турбины. Однако практического применения она не получила из-за сильного рассеяния струи пара, подаваемой на лопасти колеса турбины.

Перенесемся в средневековую Францию. Физик и талантливый изобретатель Дени Папен после многих неудачных проектов останавливается на следующей конструкции: вертикальный цилиндр заполняли водой, над которой устанавливали поршень.

Цилиндр нагревали, вода закипала и испарялась. Расширяющийся пар приподнимал поршень. Его закрепляли в верхней точке подъёма и ожидали остывания цилиндра и конденсации пара. После конденсации пара в цилиндре образовывался вакуум. Освобожденный от крепления поршень под действием атмосферного давления устремлялся в вакуум. Именно это падение поршня предполагалось использовать как рабочий ход.

Итак, полезный ход поршня был вызван образованием вакуума из-за конденсации пара и внешним (атмосферным) давлением.

Потому паровой двигатель Папена как и большинство последующих проектов получили название пароатмосферных машин.

Эта конструкция обладала весьма существенным недостатком - не была предусмотрена повторяемость цикла. Дени приходит к идее получать пар не в цилиндре, а отдельно в паровом котле.

В историю создания паровых двигателей Дени Папен вошел как изобретатель весьма важной детали - парового котла.

А поскольку пар стали получать вне цилиндра, сам двигатель перешел в разряд двигателей внешнего сгорания. Но из-за отсутствия распределительного механизма, обеспечивающего бесперебойную работу, эти проекты почти не нашли практического применения.

Новый этап в разработке паровых двигателей

Около 50 лет для откачки воды в угольных шахтах использовался паровой насос Томаса Ньюкомена. Он во многом повторял предыдущие конструкции, но содержал весьма важные новинки - трубу для вывода сконденсированного пара и предохранительный клапан для выпуска излишнего пара.

Его существенным минусом было то, что цилиндр приходилось то нагревать перед впрыскиванием пара, то охлаждать перед его конденсацией. Но потребность в таких двигателях была столь высока, что, несмотря на их очевидную неэкономичность, последние экземпляры этих машин прослужили вплоть до 1930 года.

В 1765 году английский механик Джеймс Уатт, занявшись усовершенствованием машины Ньюкомена, отделил конденсатор от парового цилиндра.

Появилась возможность цилиндр держать постоянно нагретым. КПД машины сразу вырос. В последующие годы Уатт значительно усовершенствует свою модель, оснастив её устройством для подачи пара то с одной, то с другой стороны.

Стало возможным использовать эту машину не только как насос, но и для приведения в действие различных станков. Уатт получил патент на свое изобретение - паровой двигатель непрерывного действия. Начинается массовый выпуск этих машин.

К началу XIX века в Англии работало более 320 паровых машин Уатта. Их стали закупать и другие европейские страны. Это способствовало значительному росту промышленного производства во многих отраслях как самой Англии, так соседних государств.

Двадцатью годами ранее Уатта, в России над проектом паровой машины работал алтайский механик Иван Иванович Ползунов.

Заводское начальство предложило ему построить агрегат, который приводил бы в действие воздуходувку плавильной печи.

Построенная им машина была двухцилиндровой и обеспечивала непрерывное действие подсоединённого к ней устройства.

Успешно проработав более полутора месяцев, котёл дал течь. Самого Ползунова к этому времени уже не было в живых. Ремонтировать машину не стали. И замечательное творение русского изобретателя-одиночки было забыто.

В силу отсталости России того времени мир узнал об изобретении И. И. Ползунова с большим опозданием….

Итак, для приведения в действие паровой машины необходимо, чтобы пар, вырабатываемый паровым котлом, расширяясь, давил на поршень или на лопасти турбины. А затем их движение передавалось другим механическим частям.

Применение паровых машин на транспорте

Несмотря на то, что КПД паровых двигателей того времени не превышал 5%, к концу XVIII века их стали активно использовать в сельском хозяйстве и на транспорте:

  • во Франции появляется автомобиль с паровым двигателем;
  • в США начинает курсировать пароход между городами Филадельфия и Берлингтон;
  • в Англии продемонстрирован железнодорожный локомотив на паровой тяге;
  • российский крестьянин из Саратовской губернии запатентовал построенный им гусеничный трактор мощностью 20 л. с.;
  • неоднократно предпринимались попытки построить самолёт с паровым двигателем, но, к сожалению, малая мощность этих агрегатов при большом весе самолёта делала эти попытки неудачными.

Уже к концу XIX столетия паровые двигатели, сыграв свою роль в техническом прогрессе общества, уступают место и электродвигателям.

Паровые устройства в XXI веке

С появлением новых источников энергии в XX и XXI веке снова появляется потребность в использовании энергии пара. Паровые турбины становятся неотъемлемой частью АЭС. Пар, приводящий их в действие, получают за счёт ядерного топлива.

Широко используются эти турбины и на конденсационных тепловых электростанциях.

В ряде стран проводятся эксперименты по получению пара за счёт солнечной энергии.

Не забыты и поршневые паровые двигатели. В горных местностях в качестве локомотива до сих пор используют паровозы.

Эти надёжные труженики и безопаснее, и дешевле. Линии электропередач им не нужны, а топливо - древесина и дешёвые сорта угля всегда под рукой.

Современные технологии позволяют улавливать до 95% выбросов в атмосферу и повысить КПД до 21%, так, что люди решили пока с ними не расставаться и работают над паровыми локомотивами нового поколения.

Если это сообщение тебе пригодилось, буда рада видеть тебя

Зачастую при упоминании "паровых двигателей" на ум приходят паровозы или автомобили Стэнли Стимер, но применение этих механизмов не ограничивается перевозками. Паровые двигатели, которые впервые были созданы в примитивном виде около двух тысячелетий назад, за последние три столетия стали крупнейшими источниками электропитания, а сегодня паровые турбины производят около 80 процентов мировой электроэнергии. Чтобы глубже понять природу физических сил, на основе которых работает такой механизм, мы рекомендуем вам сделать свой собственный паровой двигатель из обычных материалов, воспользовавшись одним из предложенных здесь способов! Для начала переходите к Шагу 1.

Шаги

Паровой двигатель из жестяной банки (для детей)

    Отрежьте нижнюю часть алюминиевой банки на расстояние 6,35 см. При помощи ножниц по металлу ровно отрежьте нижнюю часть алюминиевой банки примерно на треть высоты.

    Загните и прижмите ободок при помощи плоскогубцев. Чтобы не было острых краев, загните ободок банки внутрь. Выполняя это действие, следите за тем, чтобы не пораниться.

    Надавите на дно банки изнутри, чтобы сделать его плоским. У большинства алюминиевых банок из-под напитков основание будет круглым и выгнутым вовнутрь. Выровняйте дно, надавив на него пальцем или воспользовавшись небольшим стаканом с плоским дном.

    Выполните два отверстия в противоположных сторонах банки, отступив 1,3 см от верха. Для выполнения отверстий подойдет как бумажный дырокол, так и гвоздь с молотком. Вам потребуются отверстия диаметром чуть более трех миллиметров.

    Разместите по центру банки маленькую греющую свечу. Скомкайте фольгу и положите ее под низ и вокруг свечки, чтобы она не двигалась. Такие свечки обычно идут в специальных подставках, поэтому воск не должен плавиться и вытекать в алюминиевую банку.

    Обмотайте центральную часть медной трубки длиной 15-20 см вокруг карандаша на 2 или 3 витка, чтобы получился змеевик. Трубка диаметром 3 мм должна легко сгибаться вокруг карандаша. Вам потребуется достаточное количество изогнутой трубки, чтобы протянуть поперек банки через верх, плюс дополнительные прямые 5 см с каждой из сторон.

    Проденьте концы трубок в отверстия в банке. Центр змеевика должен расположиться над фитилем свечи. Желательно, чтобы прямые участки трубки с обеих сторон банки были одинаковой длины.

    Согните концы труб при помощи плоскогубцев, чтобы получился прямой угол. Согните прямые участки трубки таким образом, чтобы с разных сторон банки они смотрели в противоположные направления. Затем снова согните их, чтобы они опустились ниже основания банки. Когда все будет готово, должно получиться следующее: змеевидная часть трубки находится по центру банки над свечкой и переходит в два наклонных, смотрящих в противоположные стороны "сопла" с двух сторон банки.

    Опустите банку в миску с водой, при этом концы трубки должны погрузиться. Ваша "лодка" должна надежно держаться на поверхности. Если концы трубки недостаточно погружены в воду, попытайтесь немного утяжелить банку, но ни в коем случае не утопите ее.

    Заполните трубку водой. Самым простым способом будет опустить один конец в воду и потянуть с другого конца как через соломинку. Также можно пальцем перекрыть один выход из трубки, а второй подставить под струю воды из-под крана.

    Зажгите свечу. Через время вода в трубке нагреется и закипит. По мере превращения в пар она будет выходить через "сопла", в результате чего вся банка начнет вращаться в миске.

    Паровой двигатель из банки из-под краски (для взрослых)

    1. Прорежьте прямоугольное отверстие возле основания четырехлитровой банки из-под краски. Сделайте горизонтальное прямоугольное отверстие размером 15 x 5 см сбоку банки возле основания.

      • Необходимо убедиться, что в этой банке (и в еще одной используемой) была только латексная краска, а также тщательно вымыть ее мыльной водой перед использованием.
    2. Отрежьте полоску металлической сетки 12 x 24 см. По длине с каждого края отогните по 6 см под углом 90 o . У вас получиться квадратная "платформа" 12 x 12 см с двумя "ножками" по 6 см. Установите ее в банку "ножками" вниз, выровняв ее по краям прорезанного отверстия.

      Сделайте полукруг из отверстий по периметру крышки. Впоследствии вы будете сжигать в банке уголь, чтобы обеспечить паровой двигатель теплом. При нехватке кислорода уголь будет плохо гореть. Чтобы в банке была необходимая вентиляция, просверлите или пробейте в крышке несколько отверстий, которые образуют полукруг вдоль краев.

      • В идеале диаметр вентиляционных отверстий должен быть около 1 см.
    3. Сделайте змеевик из медной трубки. Возьмите около 6 м трубки из мягкой меди диаметром 6 мм и отмерьте с одного конца 30 см. Начиная с этой точки, выполните пять витков диаметром 12 см. Оставшуюся длину трубы согните в 15 витков диаметром по 8 см. У вас должно остаться около 20 см.

      Пропустите оба конца змеевика в вентиляционные отверстия в крышке. Согните оба конца змеевика таким образом, чтобы они были направлены вверх и пропустите оба через одно из отверстий в крышке. Если длины трубы не хватает, то потребуется немного разогнуть один из витков.

      Поместите змеевик и древесный уголь в банку. Поместите змеевик на сетчатую платформу. Заполните пространство вокруг и внутри змеевика древесным углем. Плотно закройте крышку.

      Просверлите отверстия под трубку в банке меньшего размера. По центру крышки литровой банки просверлите отверстие диаметром 1 см. Сбоку банки просверлите два отверстия диаметром 1 см – одно возле основания банки, а второе над ним возле крышки.

      Вставьте закупоренную пластмассовую трубку в боковые отверстия меньшей банки. При помощи концов медной трубки проделайте отверстия в центре двух пробок. В одну пробку вставьте жесткую пластмассовую трубку длиной 25 см, а в другую пробку – такую же трубку длиной 10 см. Они должны плотно сидеть в пробках и немного выглядывать наружу. Вставьте пробку с более длинной трубкой в нижнее отверстие меньшей банки, а пробку с более короткой трубкой в верхнее отверстие. Закрепите трубки в каждой пробке при помощи хомутов.

      Соедините трубку большей банки с трубкой меньшей банки. Разместите меньшую банку над большей, при этом трубка с пробкой должна быть направлена в противоположную сторону от вентиляционных отверстий большей банки. При помощи металлической ленты закрепите трубку из нижней пробки с трубкой, выходящей из нижней части медного змеевика. Затем аналогичным образом закрепите трубку из верхней пробки с трубкой, выходящей из верхней части змеевика.

      Вставьте медную трубку в соединительную коробку. При помощи молотка и отвертки удалите центральную часть круглой металлической электрораспределительной коробки. Зафиксируйте хомут под электрический кабель стопорным кольцом. Вставьте 15 см медной трубки диаметром 1,3 см в хомут кабеля, чтобы трубка выходила на несколько сантиметров ниже отверстия в коробке. Затупите края этого конца вовнутрь при помощи молотка. Вставьте этот конец трубки в отверстие в крышке меньшей банки.

      Вставьте шпажку в дюбель. Возьмите обычную деревянную шпажку для барбекю и вставьте ее в один конец полого деревянного дюбеля длиной 1,5 см и диаметром 0,95 см. Вставьте дюбель со шпажкой в медную трубку внутри металлической соединительной коробки таким образом, чтобы шпажка была направлена вверх.

      • Во время работы нашего двигателя шпажка и дюбель будут действовать как "поршень". Чтобы движения поршня было лучше видно, можно прикрепить к нему небольшой бумажный "флажок".
    4. Подготовьте двигатель к работе. Снимите соединительную коробку с меньшей верхней банки и заполните верхнюю банку водой, позволяя ей выливаться в медный змеевик, пока банка не будет заполнена водой на 2/3. Проверьте отсутствие утечек во всех местах соединений. Плотно закрепите крышки банок, застучав их молотком. Снова установите соединительную коробку на место над меньшей верхней банкой.

    5. Запускайте двигатель! Скомкайте куски газеты и положите их в пространство под сеткой в нижней части двигателя. Когда древесный уголь разгорится, дайте ему прогореть около 20-30 минут. По мере нагревания воды в змеевике в верхней банке начнет накапливаться пар. Когда пар достигнет достаточного давления, он вытолкнет дюбель и шпажку наверх. После сброса давления поршень опустится вниз под действием силы тяжести. При необходимости, срежьте часть шпажки, чтобы снизить вес поршня – чем он легче, тем чаще будет "всплывать". Постарайтесь сделать шпажку такого веса, чтобы поршень "ходил" в постоянном темпе.

      • Можно ускорить процесс горения, усилив приток воздуха в вентиляционные отверстия феном.
    6. Соблюдайте безопасность. Полагаем, само собой разумеется, что при работе и обращении с самодельным паровым двигателем необходимо соблюдать осторожность. Никогда не запускайте его в помещении. Никогда не запускайте его возле таких воспламеняющихся материалов, как сухие листья или нависающие ветви деревьев. Используйте двигатель только на прочной негорючей поверхности вроде бетона. Если вы работаете с детьми или подростками, то они не должны оставаться без присмотра. Детям и подросткам запрещается подходить к двигателю, когда в нем горит древесный уголь. Если вам не известна температура двигателя, то считайте, что он настолько горячий, что к нему нельзя прикасаться.

      • Удостоверьтесь, что пар может выходить из верхнего "котла". Если по какой-либо причине поршень застрянет, то внутри меньшей банки может накопиться давление. При самом худшем раскладе банка может взорваться, что очень опасно.
    • Поместите паровой двигатель в пластмассовую лодку, опустив оба конца в воду, чтобы получилась паровая игрушка. Можно вырезать лодку простой формы из пластиковой бутылки из-под газировки или отбеливателя, чтобы ваша игрушка получилась более "экологичной".

Паровые двигатели были установлены и приводили в движение большую часть паровозов в период начала 1800 и вплоть до 1950 годов прошлого века. Хочется отметить, что принцип работы этих двигателей всегда оставался неизменным, несмотря на изменение их конструкции и габаритов.

На анимированной иллюстрации приведен принцип работы парового двигателя.


Для генерации подаваемого на двигатель пара использовались котлы, работающие как на дровах и угле, так и на жидком топливе.

Первый такт

Пар из котла поступает в паровую камеру, из которой через паровую задвижку-клапан (обозначена синим цветом) попадает в верхнюю (переднюю) часть цилиндра. Давление, создаваемое паром, толкает поршень вниз к НМТ. Во время движения поршня от ВМТ к НМТ колесо делает пол оборота.

Выпуск

В самом конце движения поршня к НМТ паровой клапан смещается, выпуская остатки пара через выпускное окно, расположенное ниже клапана. Остатки пара вырываются наружу, создавая характерный для работы паровых двигателей звук.

Второй такт

В то же самое время, смещение клапана на выпуск остатков пара открывает вход пара в нижнюю (заднюю) часть цилиндра. Созданное паром в цилиндре давление заставляет поршень двигаться к ВМТ. В это время колесо делает еще пол оборота.

Выпуск

В конце движения поршня к ВМТ остатки пара освобождаются через все то же выпускное окно.

Цикл повторяется заново.

Паровой двигатель имеет т.н. мертвую точку в конце каждого хода, когда клапан переходит от такта расширения к выпуску. По этой причине каждый паровой двигатель имеет два цилиндра, что позволяет запускать двигатель из любого положения.



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама