THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Специалисты-подвесочники могут рассказать множество интересных примеров из практики, а мне придется ограничиться лишь кратким рассказом о том, почему жестче не всегда цепче, а мягче не всегда комфортнее. Работа подвесок машины вовсе не так проста, как кажется на первый взгляд. Они выполняют множество функций, которые не вполне очевидны. Я постараюсь кратко упомянуть об основных.

А вообще, о работе подвесок написано много книг, и большинство из них очень толстые. Я попробую лишь "по верхам" обозначить основные моменты, чтобы уложиться в формат познавательной статьи.

Почему без подвески не обойтись

Даже очень ровные дороги на самом деле имеют изгиб по многим направлениям, да и сама Земля мало похожа на бесконечную плоскость. И чтобы все четыре колеса касались поверхности, они должны иметь возможность перемещения вверх и вниз. При этом крайне желательно, чтобы беговая поверхность колеса прилегала к покрытию всей своей шириной при любом положении подвески. Так что машины, у которых подвески жесткие и короткоходные, практически обречены на плохое сцепление колес с дорогой, ведь всегда одно из колес будет разгружено.

1 / 2

2 / 2

Почему подвеска должна иметь ход сжатия

Для контакта всех колес с дорогой вовсе не обязательно, чтобы подвеска могла сжиматься, достаточно того, что колеса смогут двигаться только вниз. Но при движении машины в поворотах возникают боковые силы, которые стремятся наклонить авто. Если при этом одна сторона машины сможет приподниматься, а другая не сможет опуститься, центр тяжести авто сильно сместится в сторону загруженного колеса, что в свою очередь вызовет много негативных последствий.

В первую очередь еще большую разгрузку внутреннего по отношению поворота колеса и увеличение момента крена из-за перемещения центра тяжести вверх относительно центра крена подвески (о нем ниже). И, разумеется, если у колес нет хода сжатия, то даже маленькая неровность под одним из колес должна вызывать перемещение кузова, перемещение всех остальных колес вниз со всеми связанными затратами энергии на подъем и снижением сцепления колес. Что, мягко говоря, не слишком комфортно. А еще разрушительно для кузова и деталей подвески. В общем, подвеска должна быть сбалансированной, иметь ход сжатия и ход отбоя для нормальной работы.

Почему машина кренится в поворотах

Раз уж мы определились с тем, что подвеска у машины должна быть и имеет возможность перемещения вверх-вниз, то чисто геометрически образуется некая точка, центр, вокруг которой поворачивается кузов машины при крене. Эта точка называется центром крена машины.

А сумма сил инерции, воздействующих на машину в повороте, как раз приложены к ее центру масс. Если бы он совпадал с центром крена, то в повороте никакого крена бы не было, но он обычно расположен гораздо выше, и в результате образуется кренящий машину момент. И чем выше расположен центр крена, чем ниже центр тяжести, тем он меньше. На специальных гоночных конструкциях вроде машин Формулы 1 центр тяжести помещают ниже центра крена, и тогда машина может крениться в противоположную сторону, как катер на воде.

Собственно, расположение центра крена зависит от конструкции подвески. И автомобильные инженеры неплохо научились его "поднимать" повыше, изменяя конструкцию рычагов, что в теории могло бы избавить от кренов не только низкие спортивные авто, но и достаточно высокие. Проблема в том, что подвеска, сконструированная для обеспечения "неестественно задранного" центра крена, успешно борется с наклонами кузова, но при этом плохо справляется с основной задачей - демпфированием неровностей.

Почему подвеска должна быть мягкой

Достаточно очевидно, что чем мягче подвеска, тем меньше изменение положения кузова при наезде на неровность и при крене меньше распределяется нагрузка между различными колесами. А значит, и сцепление колес с дорогой при этом не ухудшается и не расходуется энергия на перемещения центра масс машины вверх-вниз. Что же, мы нашли идеальную формулу? Но, к сожалению, не все так просто.

Во-первых у подвесок ограничены ходы сжатия, и они должны быть согласованы с изменением нагрузки на ось при загрузке машины пассажирами и багажом, и с нагрузкой, возникающей при прохождении поворотов и неровностей. Слишком мягкая подвеска при повороте сожмется так сильно, что колеса с другой стороны оторвутся от земли. Так что подвеска должна не допустить исчерпания хода сжатия с одной стороны и вывешивания колеса с другой.

Получается, что слишком мягкой подвеске быть тоже плохо… Оптимальным вариантом является сравнительно небольшой диапазон "мягкости", после чего подвески становятся жесткими, но настроить такую конструкцию тем сложнее, чем выше разница между жесткой и мягкой ее частью.

При любом перераспределении нагрузки между колесами происходит ухудшение общего сцепления колес с дорогой. Дело в том, что догрузка одних колес не компенсирует все потери при разгрузке других. А в случае вывешивания разгруженных колес увеличение сцепления на догруженной стороне не компенсирует и половины потерь.

Помимо общего ухудшения сцепления, это еще и приводит к ухудшению управляемости. Борются с этим неприятным фактором, изменяя наклон плоскости качения колеса относительно дороги - так называемый развал. В результате конструктивных мероприятий, направленных на программирование изменения развала при крене машины удается компенсировать изменение сцепления колес при поперечных нагрузках в разумном диапазоне и тем самым сделать управление машиной проще.

Почему же приходится делать подвески жестче на спортивных машинах?

На управляемости машины крайне негативно сказываются любые изменения углов установки подвески при кренах машины и задержки в откликах на управляющие воздействия из-за смещения центра тяжести. А значит, приходится делать подвески жестче, чтобы в повороте крены уменьшались.

Крайним выходом является мощный стабилизатор поперечной устойчивости - торсион, который препятствует перемещению колеса одной оси относительно другого. Но это не самый лучший способ. Да, он улучшает ситуацию с изменением углов установки колес в повороте, но зато разгружает внутреннее, по отношению к повороту, колесо, и перегружает наружное. Немного лучше просто сделать подвеску жестче. Это больше сказывается на комфорте, но зато не так разгружает внутреннее колесо.

Немалое значение амортизаторов

Помимо упругих элементов, в подвеске машины присутствуют и газовые или жидкостные амортизаторы - элементы, ответственные за гашение колебаний подвески и вывода энергии, которую машина тратит на перемещения центра масс. С их помощью можно подправить все реакции подвески на сжатие и отбой, ведь амортизатор может обеспечить в динамике куда большую жесткость, чем пружина. При этом его жесткость, в отличие от пружин, будет очень разной в зависимости от хода подвески и скорости ее перемещения.

Разумеется, совсем мягкий амортизатор не сможет выполнять свою основную задачу - гашение колебаний, машина попросту будет раскачиваться после прохождения неровности. А установка очень жесткого будет создавать эффект, схожий с установкой очень жесткой пружины, которая не хочет сжиматься и тем самым увеличивает нагрузку на колесо и разгружает все остальные. Но тонкая настройка поможет уменьшить крены в поворотах и помочь пружинам, уменьшить клевки кузова при разгоне и торможении и при этом не мешать колесам проезжать мелкие неровности. И разумеется, не допускать "пробоя" подвесок при проезде жестких неровностей. В общем, воздействие на поведение машины они оказывают не меньшее, чем жесткость пружин.

Немного о комфорте и частотах колебаний

Понятно, что у машины без подвески комфорт был бы нулевой, ведь все мелкие неровности от дороги передавались бы прямо на ездоков. Бр-р. Но если подвеску сделать очень мягкой, то ситуация станет ненамного лучше - постоянная раскачка тоже крайне плохо сказывается на людях. Оказывается, человек плохо переносит колебания как с небольшой амплитудой и большой частотой от жесткой подвески, так и с большой амплитудой и с малой частотой от мягкой.

Для создания комфортных условий для пассажиров необходимо согласовать жесткость пружин, амортизаторов и покрышек так, чтобы на самых ходовых для этой машины покрытиях частоты колебаний пассажиров и уровень ускорений оставались в комфортных пределах.

Частота и амплитуда колебаний подвески важны еще и в другом аспекте - собственные частоты резонанса системы машина-подвеска-дорога не должны совпадать с возможными частотами управляющих воздействий и возмущений от дороги. Так что задача конструкторов заключается еще и в том, чтобы обойти опасные режимы как можно дальше, ведь в случае резонанса можно и машину перевернуть, и потерять управление, и просто поломать подвески.

Итак, какой должна быть подвеска?

Как это ни парадоксально, но чем мягче подвеска, тем лучше сцепление колес с дорогой. Но при этом она не должна допускать сильных кренов и изменения пятна контакта колес с дорогой. Чем хуже дороги, тем более мягкой должна быть подвеска для получения хорошего сцепления. Чем ниже коэффициент сцепления колес, тем мягче должна быть подвеска. Казалось бы, проблему может решить установка стабилизатора поперечной устойчивости, но нет, у него тоже есть свои негативные черты, он делает подвеску более "зависимой" и уменьшает ход подвески.

Так что настройка подвески остается делом для настоящих мастеров и всегда требует много времени на натурные испытания. Множество факторов затейливо переплетаются и, изменив один параметр, можно ухудшить и управляемость, и плавность хода. И не всегда жесткая подвеска делает машину быстрее, а мягкая - комфортнее. На управляемости сказывается и изменение жесткости передней и задней подвесок относительно друг друга и даже малейшее изменение характеристик жесткости амортизаторов. Надеюсь, эта статья поможет более тщательно относиться к выбору комплектующих для подвесок и предотвратит необдуманные эксперименты.

Любой узел автомобиля проходит испытания, прежде чем новая марка авто поступит в серийное производство. Подвеска имеет определенные параметры регулировки для улучшения условий эксплуатации и повышения безопасности вождения. Эти регулировки осуществляет изготовитель. Они имеют усредненные значения и предназначены для езды по дорогам общего пользования.

Стиль вождения каждого автовладельца отличается индивидуальностью. Этим продиктованы разные требования, которые водители предъявляют к своим машинам. Существуют два обратно пропорциональных критерия, которые конструкторы стараются усреднить. Это плавность работы подвески и управляемость. К сожалению, высокие показатели одного из них резко снижают показатели другого. Поэтому в зависимости от того, что именно необходимо повысить, производится определенный тюнинг подвески.

Установка пружин

Пружина играет ключевую роль при движении и маневрировании. Для повышения управляемости необходимо выбирать более жесткие пружины, так как они способны быстрее реагировать на постоянно изменяющиеся усилия. Любой производитель комплектующих указывает степень жесткости пружин и предоставляет возможность выбора по данному параметру. Внешним признаком усиленной пружины служит маркировка на внешней стороне витка в виде полоски зеленого или синего цвета. Если маркировка не нанесена, то следует обратить внимание на диаметр прута. Больший диаметр соответствует большей жесткости. Если пружина состоит из двух секций с разными витками – то это прямой признак отличной управляемости.

Некоторые производители специализируются на изготовлении спортивных пружин и предлагают изделия в разном ценовом диапазоне.

Установка амортизаторов

Сочетать жесткие пружины и стандартные амортизаторы не только бессмысленно, но и расточительно. Большая частота колебаний и малой амплитудой может быстро вывести из строя стоковое оборудование. Для того чтобы эффективно гасить возникшие колебания нужен жесткий амортизатор. Такими свойствами обладают газовые модели. Так как у классического двухтрубного масляного амортизатора есть один существенный недостаток – вспенивание масла при интенсивных нагрузках, то однотрубный газовый вариант будет лучшим решением по улучшению управляемости.

Работа жесткой пружины с газовым амортизатором обеспечивает своевременное сжатие и отбой, что приводит к улучшению сцепления колес с поверхностью дороги. В поворотах на большой скорости кузов автомобиля в меньшей степени подвержен крену. При разгоне и торможении удается избавиться от «клевков», характерных для мягкой подвески. Все это влияет на информативность руля и остроту управления.

Это интересно: Электромагнитная подвеска: принцип работы плюсы и минусы

Как и в случае с пружинами, выделились брендовые производители, выпускающие амортизаторы с высокими техническими показателями.

Опоры стоек


Данный узел влияет на управляемость лишь в двух случаях: если амортизатор крепится к опоре шарнирно и опора позволяет изменять угол кастора. В первом случае такие опоры не устанавливаются на серийные автомобили, а про второй будет описано ниже. Однако автовладельцы предпочитают устанавливать опоры от ведущих производителей, ведь качественное поглощение вибраций тоже сочетается с хорошей управляемостью.

Настройка углов установки колес

Как было сказано в самом начале, собранные элементы в единый узел еще не дадут ожидаемого результата работы. Чтобы добиться тех или иных показателей управляемости автомобиля, необходимо произвести настройку трех параметров – углов установки колес.

Угол кастора

Угол кастора можно определить как угол отклонения оси поворота колеса от вертикали, проходящей через ее центр. Без специально смоделированной анимации достаточно сложно представить себе влияние угла кастора на поведение автомобиля. Конструкторы отмечают, что этот угол должен быть отличным от нуля для возможности самоцентрирования рулевой системы после прекращения усилия (при выходе из поворота). Больший угол способствует более эффективному возврату руля. Но параллельно с этим увеличивается радиус поворота и усилие для совершения маневра. В техническом плане угол кастора позволяет в увеличенном диапазоне проводить настройку угла развала, что влияет на площадь сцепления колеса с дорогой. Однако, многие производители не предоставляют возможности регулировки оси поворота, установив на заводе оптимальный угол.

Современный автопром отличается возможностью регулировать кастор. Для этого на переднеприводных моделях предусмотрены регулировочные шайбы на распорках стоек. Добавление одной шайбы увеличивает угол на 19 минут. Максимально отклонить ось поворота можно на 3 градуса. Но при установке опор стойки SS20 можно добиться большего результата. Эксперименты с данным параметром должны проводиться в специальном сервисе, так как его изменение повлечет перенастройку угла развала.

Это интересно: Пневматическая подвеска принцип работы плюсы и минусы

Плоскость колеса не должна быть строго вертикальной, так как это сыграет злую шутку при проезде неровностей и на поворотах. Угол развала – это угол между плоскостью колеса и вертикальной плоскостью. Он считается положительным, если верхняя часть колеса выступает наружу, а отрицательным – внутрь. На повороте кузов обязательно начнет крениться, значит, колесо для лучшего сцепления должно изменить свою плоскость относительно вертикали. Это возможно только при отрицательном развале. Некоторые марки автомобилей не предусматривают настройку этого параметра, остальные имеют свои определенные показатели. Если нет возможности посетить сервис, то любыми способами и средствами следует добиться настройки отрицательного развала в 15 градусов. Хоть такой угол спровоцирует более интенсивный износ шин, но обеспечит неплохую управляемость при больших скоростях.

Угол схождения

Угол схождения откладывается относительно направления движения. Если плоскости колес пересекаются впереди автомобиля, то угол положительный. Отрицательный угол плохо влияет на управляемость. Завод-изготовитель рекомендует придерживаться нормального положения с допустимыми поправками. Однако для увеличения отзывчивости автомобиля на повороты руля угол схождения делают на 10-15 минут в положительную сторону. Такая установка не лишена отрицательного момента – неравномерный износ шин.

Рассматривая все варианты повышения управляемости, невозможно выделить оптимальный вариант, так как любое конструктивное изменение или изменение настроек имеет свои недостатки. В основном к данным процедурам прибегают любители гонок. Они могут себе позволить кардинальным образом завысить параметры управляемости в ущерб комфорту и ресурсу деталей. Судя по отзывам автовладельцев, тюнинг подвески для повседневной езды должен выполняться по 1-2 пунктам.

Различают вертикальную, продольную и боковую жесткости подвесок.

Вертикальная жесткость подвески должна обеспечить требуемую плавность хода автомобиля. Её величина может быть назначена по известному значению массы автомобиля, приходящейся на ось, и потребной собственной частоты колебаний подрессоренной массы по формуле:

Масса приходящаяся на переднюю подвеску, ;

f - собственная частота колебаний, принимаем f = 1 Гц;

Суммарная жесткость подвески (2 колеса), с учетом

жесткости шин.

Из полученной суммарной жесткости подвески легко выделить жесткость собственно подвески:

Выбор потребного хода подвески

Для движения по неровной дороге с нормированным микропрофилем, в принципе, (не требуется большой динамический ход сжатия подвески. По результатам расчетов движения автомобиля даже на разбитой грунтовой дороге среднеквадратичное отклонение хода подвески составляет не более 20 мм. Тогда, по правилу За, достаточно иметь ход сжатия 3*20=60 мм. Вместе с тем, при переезде единичных неровностей в повороте или при торможении, может потребоваться и больший ход. Ход подвески должен быть достаточно большим и для того, чтобы обеспечить определенные углы крена. Практика показывает, что для автомобилей с колеей порядка 1400 мм необходимо иметь ход сжатия от состояния полной загрузки не менее 70 мм и ход отбоя от состояния загрузки 1 водителем не, менее 50 мм. Для большей колеи требуется и больший ход подвески. Принимаем: S отб = 50 мм - ход отбоя; S сж = 70 мм - ход сжатия; S ? = 210 мм - суммарный ход подвески.

Построим характеристику подвески по известным значениям подрессоренной массы в двух крайних состояниях загрузки и по жесткости подвески.


Упругая характеристика, построенная таким образом, не обеспечивает должного коэффициента динамичности подвески. Обычным является значение К д =2 для вертикальных нагрузок. Кроме того, при полном ходе отбоя на колесе имеется сила 1400 Н (140 кгс). Без дополнительных упругих элементов подвеску будет "пробивать", также будут ощутимы толчки на "подхватах". Чтобы их не было, вводим дополнительные упругие элементы.


Точка включения буфера сжатия должна подбираться опытным путем. Вместе с тем, хотя длинный буфер сжатия обеспечивает более мягкое включение, обычно его ходимость ограничена. Мягкая подвеска, которая требуется для обеспечения хорошей плавности хода, приводит к чрезмерным кренам при повороте автомобиля. Для снижения крена в подвеске применяют упругие элементы - стабилизаторы поперечной устойчивости. Особенностью работы стабилизатора является то, что при одноименном ходе подвески он не развивает дополнительного усилия, а включается в работу лишь при разноименном ходе. Недостаток стабилизатора - он повышает жесткость подвески при наезде на препятствие одним колесом.

Продольная и боковая жесткость подвески

Жесткости подвески должны быть достаточно велики для обеспечения управляемости автомобиля и для уменьшения потребного пространства, которое занимают колесные арки. В то же время, для обеспечения плавности хода, эти жесткости не могут быть слишком большими.

Желательными являются нелинейные характеристики.

Принимаем: С х = 12 * C z = 12 * 32465,7 = 389588,3 Н/м; С у = 12 * C z = 90 * 32465,7 = 2921912,2 Н/м.

Угловая жесткость подвески

Должна быть достаточно большой, чтобы не допустить повышенный крен кузова при движении в повороте.

Предельно - допустимый крен по ГОСТ Р = 7° при 0,4 g. Фактически, для обычных легковых автомобилей - от 2 до 4°. Примем 4°.

Рассчитаем угловую жесткость (общую):

Где кг - подрессоренная масса;

Полученную суммарную угловую жесткость распределим по осям. Для заднеприводных автомобилей С пер /С зад = 1,3. С пер = 20900. Такое распределение связано с желанием получить некоторую недостаточную поворачиваемость и положением оси крена. Точные величины и распределение угловых жесткостей получают в ходе доводки автомобиля.

Демпфирование в подвеске

Демпфирование в подвеске оказывает существенное влияние на колебания автомобиля. Усилие демпфирования зависит от скорости деформации подвески. Обычно для оценки демпфирования используется коэффициент относительного демпфирования колебаний:

К п - демпфирование на одно колесо, Н/см; C zп - жесткость подвески (1 колесо), Н/м; m п - подрессоренная масса на 1 колесо.

относительного демпфирования должна быть 0,25...0,30. Важную роль для обеспечения колебаний колес без отрыва от дороги играет величина относительного демпфирования колебаний колеса.

С zk - жесткость колеса, Н/м;

Kf - коэффициент увеличения жесткости колеса, зависит от материала корда в брекере, k f = 1,05.

К к - собственное демпфирование шины, К к = 30 Н/см;

m K - неподрессоренная масса на 1 колесо; в неё входит полностью масса частей, совершающих полный ход вместе с колесом и S часть массы рычагов, один конец которых закреплён на кузове.

Сделать автомобиль более комфортным поможет модернизация ходовой части автомобиля. Рассмотрим, как сделать подвеску мягче.

Что влияет на ходовые качества

Факторы, определяющие ходовые характеристики автомобиля:

  • жесткость и конструкция пружин;
  • амортизаторы;
  • размер покрышек и состав резины;
  • соотношение неподрессоренной и подрессоренной масс.

Мы не учитываем упругость резины сайлентблоков, поскольку владельцу редко предоставляется возможность воочию оценить разницу между производителями резинотехнических изделий. К тому же зачастую главное отличие – ресурс сайлентблоков. Разницу в ходовых качествах в зависимости от производителя сайлентблоков заметить крайне сложно. Разителен будет переход на . Данный тип подвески предназначен для спортивной езды и жестких условий эксплуатации. Если на вашем авто установлены полиуретановые изделия, то переход на сайлентблоки из обычной резины сделает автомобиль мягче.
Перед началом тюнинга ходовой части проведите комплексную . Возможно, слишком жесткая, громкая реакция на неровности является неисправностью какого-то узла, а не конструктивной недоработкой. Подобный эффект наблюдается и при езде на перекаченных покрышках.

Пружины

Упругость пружин и величина усилия, требуемая для сжатия, зависят не только от толщины витков, но и от сплава, из которого изготовлены упругие элементы. Поскольку обычному покупателю характеристики металла узнать крайне сложно, ориентироваться можно на толщину витка. Закономерности, влияющие на ездовые характеристики машины:

  • конструкция пружины. Наиболее комфортными признаны пружины с изменяемой толщиной витка. Такие пружины имеют так называемый виток комфорта;
  • чем жестче пружина, тем отчетливее передаются вибрации на кузов автомобиля. Соответственно, чем толще виток, тем большая жесткость у пружины. Мягкая подвеска автомобиля и жесткие пружины – вещи абсолютно несовместимые;
  • длина пружины влияет на ход сжатия подвески. Чем меньший ход подвески, тем меньше расстояние до «пробоя» амортизаторов (возникает, когда амортизатор, отрабатывая неровность, упирается в свое крайнее положение; в этот момент происходит удар об отбойник). Меньшая длина пружины ведет к меньшему ходу подвески, что нужно учитывать при установке спортивных пружин (особенно при обрезании витков). Именно поэтому важно соблюдать баланс между жесткостью витков и длиной пружины.

Также немаловажным аспектом является жесткость материала, в который упирается пружина. Если под упругий элемент подложить прокладку из плотного слоя резины, то уменьшится количество вибраций, передаваемых на кузов. При желании вы можете рассчитать все параметры пружин, а затем изготовить их на заказ. Рекомендуем посмотреть видео, чтобы лучше понять суть переработки упругих элементов.

Амортизаторы

Если главное предназначение пружин – поглощать энергию удара, то амортизаторы предназначены для рассеивания энергии толчков. Наиболее эффективно с этим справляются двухтрубные газо-масляные амортизаторы. Если на вашем авто установлены масляные гасители колебаний, то теперь вы знаете, как сделать подвеску мягче.

Оба вида амортизаторов используют в качестве рабочей жидкости масло. Разница заключается в том, что в ходе сжатия масляных моделей на рабочую жидкость не действует обратное усилие. Для проверки можете сжать амортизатор вручную. Вы увидите, что шток останется в сжатом состоянии или лишь немного возвратится в прежнее положение. В газо-масляных амортизаторах компенсационная камера заполнена инертным газом (азотом), поэтому при сжатии на рабочую жидкость действует возвратное усилие (шток после вдавливания стремится занять прежнее положение).

Использование в конструкции газа позволяет колесу не зависать в воздухе после отработки подвеской неровности и не ударятся о дорожное полотно. Стоит признать, что при движении на небольшой скорости оба типа амортизаторов работают примерно одинаково. Еще один недостаток масляных моделей – при интенсивной работе и перегреве в масле появляются пузыри воздуха, что негативно сказывается на работоспособности амортизаторов и уровне комфорта. Было бы неправильно сказать, что подвеска после такого тюнинга становится мягче, но движение на большой скорости по ухабистой дороге становится значительно комфортней.

Не стоит устанавливать однотрубные газо-масляные гасители колебаний (часто их называют газовыми). Такой тип амортизаторов обладает большей жесткостью, что лишь снизит уровень комфорта при преодолении неровностей.

Резина

Для того чтобы сделать автомобиль комфортней, не всегда нужно делать подвеску мягче. Достаточно установить на машину покрышки с более высоким профилем и мягким составом резины. Высотой профиля называют расстояние от посадочного места на диске до окончания протектора. Параметр обязательно маркируется на боковине покрышки. Рассмотрим маркировку 170/70 R13, в которой 70 – процентное соотношение, определяющее высоту профиля. В нашем случае высота составляет 70% от 170 (ширины профиля) и равна 123 мм. Как параметры профиля шины влияют на управляемость и комфорт:

Влияние массы на кинематику подвески

Неподрессоренная масса автомобиля – общий вес элементов, которые при работе подвески находятся в подвижном состоянии по отношению к кузову. Иными словами, части авто, которые двигаются вместе с подвеской и некоторые элементы ходовой части. В автомобиле к таковым относятся колесные диски, покрышки, элементы тормозной системы, подшипник ступицы (примерно 15% от общей суммы автомобиля, остальные 85% – подрессоренная масса).

Для увеличения плавности хода нужно либо увеличить подрессоренную массу (знакомо владельцам рессорных авто, которые часто загружают ось для большей плавности хода), либо уменьшить вес неподрессоренных элементов. Поскольку первый вариант ведет к увеличению расхода топлива, ухудшению динамики и управляемость, то сосредоточиться нужно на неподрессоренной массе. Чтобы сделать подвеску мягче, достаточно установить легкосплавные диски, не перебарщивать с шириной и высотой покрышки, а также размерами самих дисков.

- Сударыня, почему же, позвольте вас спросить, вы не надели алмазные подвески? Ведь вы знали, что мне было бы приятно видеть их на вас.
А. Дюма «Три мушкетера»

Напомним: называется вся совокупность деталей и узлов, соединяющих кузов или раму автомобиля с колесами.

Перечислим основные элементы подвески:

  • Элементы, обеспечивающие упругость подвески. Они воспринимают и передают вертикальные силы, которые возникают при проезде неровностей дороги.
  • Направляющие элементы - они определяют характер перемещения колес. Также направляющие элементы передают продольные и боковые силы, и возникающие от этих сил моменты.
  • Амортизирующие элементы. Предназначены для гашения колебаний, возникающих при воздействии внешних и внутренних сил

Вначале была рессора

У первых колесных не было никаких подвесок - упругие элементы попросту отсутствовали. А затем наши предки, вероятно, вдохновившись конструкцией стрелкового лука, стали применять рессоры. С развитием металлургии стальным полосам научились придавать упругость. Такие полосы, собранные в пакет, и образовали первую рессорную подвеску. Тогда чаще всего использовалась так называемая эллиптическая подвеска, когда концы двух рессор были соединены, а их середины крепились к кузову с одной стороны и к оси колес с другой.

Затем рессоры стали применять на автомобилях, причем как в виде полуэллиптической конструкции для зависимых подвесок, так и установив одну, а то и две рессоры поперек. При этом получали независимую подвеску. Отечественный автопром долго использовал рессоры - на Москвичах до появления переднеприводных моделей, на Волгах (за исключением Волги Сайбер), а на УАЗах рессоры применяются до сих пор.

Рессоры эволюционировали вместе с автомобилем: листов в рессоре становилось меньше, вплоть до применения однолистовой рессоры на современных малых развозных фургонах.

Плюсы рессорной подвески

Минусы рессорной подвески

  • Простота конструкции - при зависимой подвеске достаточно двух рессор и двух амортизаторов. Все силы и моменты от колес рессора передает на кузов или раму, не нуждаясь в дополнительных элементах
  • Компактность конструкции
  • Внутреннее трение в рессоре с несколькими листами гасит колебания подвески, что снижает требования к амортизаторам
  • Простота изготовления, дешевизна, ремонтопригодность
  • Обычно используется в зависимой подвеске, а она сейчас встречается все реже
  • Достаточно высокая масса
  • Не очень высокая долговечность
  • Сухое трение между листами требует или применения специальных прокладок или периодической смазки
  • Жесткая конструкция с рессорами не способствует комфорту при малой нагрузке. Поэтому чаще применяется на коммерческих транспортных средствах.
  • Регулировка характеристик в эксплуатации не предусмотрена

Пружинная подвеска

Пружины начали устанавливать еще на заре автомобилестроения и с успехом применяют до сих пор. Пружины могут работать в зависимых и независимых подвесках. Их применяют на легковых автомобилях всех классов. Пружина, поначалу только цилиндрическая, с постоянным шагом навивки по мере совершенствования конструкции подвески приобрела новые свойства. Сейчас применяют конические или бочкообразные пружины, навитые из прутка переменного сечения. Все для того, чтобы усилие росло не прямо пропорционально деформации, а более интенсивно. Сначала работают участки большего диаметра, а затем включаются те, что поменьше. Так же и более тонкий пруток включается в работу раньше, чем более толстый.



Торсионы

А вы знаете, что почти в любом автомобиле с пружинной подвеской все равно есть торсионы? Ведь стабилизатор поперечной устойчивости, который сейчас ставят почти повсеместно, это и есть торсион. Вообще любой относительно прямой и длинный рычаг, работающий на кручение, представляет собой торсион. Как основные упругие элементы подвески торсионы стали применятся наряду с пружинами в самом начале автомобильной эры. Торсионы ставили вдоль и поперек автомобиля, использовали в самых разных типах подвесок. На отечественных автомобилях торсион использовался в передней подвеске Запорожцев нескольких поколений. Тогда торсионная подвеска пришлась кстати вследствие своей компактности. Сейчас торсионы чаще используют в передней подвеске рамных внедорожников.

Упругим элементом подвески является торсион - стальной стержень, работающий на кручение. Один из концов торсиона закреплен на раме или несущем кузове автомобиля с возможностью регулировки углового положения. На другом конце торсиона установлен нижний рычаг передней подвески. Усилие на рычаге создает момент, закручивающий торсион. Ни продольная, ни боковая силы на торсион не действуют, он работает на чистое кручение. Подтяжкой торсионов можно регулировать высоту передней части автомобиля, но при этом полный ход подвески остается прежним, мы только меняем соотношение ходов сжатия и отбоя.

Амортизаторы

Из курса школьной физики известно, что любой упругой системе свойственны колебания с некой собственной частотой. А если еще будет воздействовать возмущающая сила с совпадающей частотой, то возникнет резонанс - резкое увеличение амплитуды колебаний. В случае с торсионной или пружинной подвеской бороться с этими колебаниями и призваны амортизаторы. В гидравлическом амортизаторе рассеивание энергии колебаний происходит за счет потери энергии на перекачивание специальной жидкости из одной камеры в другую. Сейчас телескопические амортизаторы распространены повсеместно, от малолитражек до большегрузных автомобилей. Амортизаторы, называемые газовыми, на самом деле тоже жидкостные, но в свободном объеме, а он есть у всех амортизаторов, содержится не просто воздух, а газ под повышенным давлением. Поэтому «газовые» амортизаторы всегда стремятся вытолкнуть свой шток наружу. А вот у следующего вида подвесок без амортизаторов можно обойтись.

Пневматическая подвеска

В пневматической подвеске роль упругого элемента играет воздух, находящийся в замкнутом пространстве пневмобаллона. Иногда вместо воздуха используют азот. Пневмобаллон представляет собой герметичную емкость со стенками из синтетических волокон, завулканизированных в слой герметизирующей и защитной резины. Конструкция во многом напоминает боковину шины.

Важнейшим качеством пневмоподвески является возможность изменять давление рабочего тела в баллонах. Причем перекачка воздуха позволяет устройству играть и роль амортизатора. Система управления позволяет изменять давление в каждом отдельном баллоне. Таким образом автобусы могут вежливо наклоняться на остановке для облегчения посадки пассажиров, а грузовики сохранять постоянную «стать», будучи набитыми под завязку или абсолютно порожними. А на легковых автомобилях пневмобаллоны могут устанавливаться в задней подвеске для сохранения постоянного дорожного просвета в зависимости от загрузки. Иногда в конструкции внедорожников применяют пневмоподвеску и на передней, и на задней осях.

Пневмоподвеска позволяет регулировать клиренс автомобиля. На больших скоростях машина «приседает» ближе к дороге. Поскольку при этом центр масс становится ниже, уменьшается валкость в поворотах. А на бездорожье, где важен большой дорожный просвет, кузов, наоборот, приподнимается.

Пневмоэлементы совмещают в себе функции пружин и амортизаторов, правда только в тех случаях если это заводская конструкция. В тюнинговых конструкциях, когда пневмобаллоны просто добавляют к существующей подвеске, амортизаторы лучше оставить.

Установку пневмоподвесок очень любят тюнингисты всех мастей. И, как обычно, кто-то хочет пониже, кто-то повыше.




Зависимая и независимая подвеска

Все слышали выражение «у него независимая подвеска по кругу». А что же это значит? Независимой подвеской называется такая подвеска, когда каждое колесо совершает ходы сжатия и отбоя (вверх и вниз) не оказывая влияния на перемещения других колес.



Независимая подвеска типа МакФерсон с L или А-образными рычагами - сегодня самый распространенный тип передней подвески в мире. Простота и дешевизна конструкции совмещаются с неплохой управляемостью.


Зависимой называется такая подвеска, когда колеса объединяет одна жесткая балка. При этом ход одного колеса, например вверх, сопровождается изменением угла наклона другого колеса относительно дороги.

Раньше такие подвески применялись весьма широко - взять хоть наши Жигули. Теперь только на серьезных внедорожниках с мощной неразрезной балкой заднего моста. Зависимая подвеска хороша только своей простотой и используется там, где по условиям прочности необходим жесткий неразрезной мост. Еще есть полузависимая подвеска. Такая используется на задней оси недорогих автомобилях. Она представляет собой упругую балку, которая связывает оси задних колес.



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама