THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама


Li-ion аккумуляторы типа 18650 различной емкости получили в настоящее время очень широкое распространение. С их приобретением встает проблема зарядки и обязательно в соответствии с техническими требованиями к процессу зарядки. Вот некоторые из этих требований:
- зарядка стабильным током;
- режим стабилизации напряжения;
- индикация окончания зарядки;
- непревышение допустимой температуры в процессе зарядки аккумулятора.

Вашему вниманию предлагается несложная в изготовлении и наладке схема ЗУ Li-ion аккумуляторов, хорошо зарекомендовавшая себя в работе.

Схема представляет собой стабилизатор тока и напряжения. Пока напряжение на аккумуляторе в процессе зарядки не достигнет уровня Uстаб.=(R7/R5+1)*Uref (Uref-опорное напряжение TL431=2,5В), TL431 находится в закрытом состоянии, и схема работает как стабилизатор тока. Iстаб.=0,6/R2 (0,6-напряжение открывания транзистора КТ816В). Как только напряжение на аккумуляторе достигнет Uстаб., схема переходит в режим стабилизации напряжения. Для Li-ion аккумулятора эта величина равна 4,2В. По достижении на аккумуляторе напряжения 4,2В начинает светиться светодиод желтого цвета, сигнализируя о том, что аккумулятор заряжен на 80-90%.Зарядный ток снижается до величины 7…8мА. В этом состоянии оставьте аккумулятор на 10-15 часов, чтобы он набрал полную емкость.

Немного о назначении элементов схемы.
LED1 - синего цвета, светится при установке аккумулятора (АК) в зарядный бокс при неподключенном питании ЗУ. При напряжении на АК менее 3В LED1 не светится.
LED2 - желтого цвета. Служит для индикации окончания процесса зарядки АК. При установке в бокс незаряженного АК LED2 не светится. Если он светится, то это говорит о том, что в бокс вставлен заряженный АК (при неподключенном питании ЗУ).
R2 - ограничивает зарядный ток АК.
R5, R7 - служат для установки напряжения 4,2В на контактах зарядного бокса до установки в него аккумулятора (можно любым).

Все детали ЗУ, кроме транзистора, установлены на печатной плате со стороны печатных проводников:

Вариант платы для тех, кто не ленится сверлить отверстия в стеклотекстолите:

Транзистор снабжен небольшим радиатором. В процессе зарядки транзистор греется до 40°С. Резистор R2 также греется, поэтому лучше установить параллельно два по 10 Ом для уменьшения нагрева.
Напряжение блока питания для зарядки одного аккумулятора примерно 5В постоянного тока. При необходимости заряжать сразу несколько аккумуляторов напряжение БП выбирается таким, чтобы на каждом блоке оно составляло 4,2В. Мощность блока питания выбирается из величины зарядного тока для каждого аккумулятора. Можно использовать импульсный источник питания. Габариты зарядного устройства будут меньше.
Процесс наладки зарядного устройства несложен. Не вставляя аккумулятор, подаем питание на схему. Должны светиться оба светодиода. Далее измеряем напряжение на контактах зарядного бокса. Если оно равно 4,2В, вам повезло и наладка почти завершена. В случае, если напряжение больше или меньше 4,2В, отключаем питание, вместо резистора R5 или R7 впаиваем переменный многооборотный резистор 10к и точно устанавливаем напряжение 4,2В на контактах бокса. Измерив величину получившегося сопротивления настоечного резистора, подбираем такой же постоянный и впаиваем в схему. Еще раз проверяем напряжение на контактах зарядного бокса. Величину зарядного тока проверяем амперметром на контактах зарядного бокса, не вставляя аккумулятор. Подбором величины резистора R2 можно установить желаемый зарядный ток. Большими токами не увлекаемся, может греться аккумулятор, что категорически недопустимо. От перегрева емкость Li-ion аккумуляторов снижается и не восстанавливается.
Аккумуляторы лучше всего заряжать по одному. При необходимости заряжать одновременно несколько аккумуляторов можно соединить блоки последовательно по такой схеме.

В этой схеме каждый аккумулятор заряжается отдельно. Напряжение в конце зарядки на каждом АК будет 4,2В, а зарядный ток - 0,5А. Заряжая одновременно, например, семь аккумуляторов, напряжение источника питания должно быть 4.2В*7=29,5В. Мощность источника питания определяется по величине зарядного тока 0,5А для каждого АК, т.е приблизительно 40Вт.

Фото готового устройства.


Обнаружил, что у меня валяется некоторое количество вполне исправных литиевых аккумуляторов от дохлых мобилок, ноутов и т.д, которые можно использовать в разных поделках. Чем-то их надо заряжать. В залежах были найдены подходящие детальки, и понеслось…

Схема зарядного устройства

Рисуем схемку, с оглядкой на наличие деталей в ящике стола. Ради такого простого изделия лень лишний раз бежать в магазин.


ограничивает ток, TL431+IRF ограничивает напряжение. Ничего особенного, наверняка таких же точно схем уже нарисовали не один десяток. Ограничение тока настроено на 125 мА исходя из возможностей применённого трансформатора и из ограничения на тепловыделение в маленьком пластиковом корпусе. Вообще-то, даже маленькие аккумуляторы от мобилок держат гораздо больший зарядный ток без перегрева.
Плата делалась достаточно компактной, чтобы вместить её в имеющийся пластиковый корпус.

--
Спасибо за внимание!
Игорь Котов, главный редактор журнала «Датагор»


Спасибо за внимание!

Очуменные литиевые аккумуляторы, 6 штук, бесплатная доставка.
6Pcs 18650 3.7V 5000mAh Rechargeable Lithium Battery

В нынешнее время очень популярны литий-ионные аккумуляторы, они используются в различных гаджетах, к примеру телефонах, умных часах, плеерах, фонариках, ноутбуках. Впервые аккумулятор такого типа (Li-ion) выпустила известная японская фирма Sony. Принципиальная схема простейшего аккумуляторов представлена на картинке ниже, собрав её, у вас будет возможность самостоятельно восстанавливать заряд в аккумуляторах.

Самодельная зарядка литиевых АКБ - схема электрическая

Основой для данного прибора являются две микросхемы-стабилизатора 317 и 431 (). Интегральный стабилизатор LM317 в данном случае служит источником тока, данную деталь берём в корпусе TO-220 и обязательно устанавливаем на теплоотвод с применением термопасты. Регулятор напряжения TL431 выпускаемый компанией texas instruments существует кроме этого, в корпусах SOT-89, TO-92, SOP-8, SOT-23, SOT-25 и других.

Светодиоды (LED) D1 и D2 любого, приятного для вас цвета. Мной были выбраны такие: LED1 красный прямоугольный 2,5 мм (2,5 милиКандел) и LED2 зелёный диффузионный 3 мм (40-80 милиКандел). Удобно применять smd светодиоды, если вы не будете устанавливать готовую плату в корпус.

Минимальная мощность резистора R2 (22 Ohm) 2 Ватта, а R5 (11 Ohm) 1 Ватт. Все отсальные 0,125-0,25W.

Переменный резистор на 22 килоОма должен быть обязательно типа СП5-2 (импортный 3296W). Такие переменные резистора имеют очень точную регулировку сопротивления, которое можно плавно подстраивать крутя червячную пару, похожую на бронзовый болтик.

Фото измерения вольтажа li-ion аккумулятора от сотового телефона до зарядки (3.7V) и после (4.2V), ёмкость 1100 mA*h.

Печатная плата для литиевого зарядного

Печатная плата (PCB) существует в двух форматах для разных программ - архив находится . Размеры готовой печатной платы в моём случае 5 на 2,5 см. По бокам оставил пространство для креплений.

Как работает зарядка

Как работает готовая схема такого зарядного устройства? Сначала аккумулятор заряжается постоянных током, который определяется сопротивление резистора R5, при стандартном номинале 11 Ом он будет примерно 100 мА. Далее, когда перезаряжаемый источник энергии будет иметь напряжение 4,15-4,2 вольта начнется зарядка постоянным напряжением. Когда же ток зарядки снизится до маленьких значений светодиод D1 перестанет светиться.

Как известно, стандартным напряжение для зарядки Li-ion является 4,2V, данную цифру необходимо установить на выходе схемы без нагрузки, с помощью вольтметра, так аккумулятор будет заряжается полностью. Если же немножко снизить напряжение, где-то на 0,05-0,10 Вольт, то ваш аккумулятор будет заряжаться не до конца, но так он прослужит дольше. Автор статьи ЕГОР .

Обсудить статью ЗАРЯДНОЕ ЛИТИЕВЫХ АККУМУЛЯТОРОВ

Сергей Никитин

Зарядное устройство для Li-ion аккумуляторов.

Простое зарядное устройство, рассматриваемое в этой статье, позволяет заряжать Li-ion аккумуляторы, в конструкции которых отсутствует контроллер заряда.
Это зарядное устройство не позволяет их перезарядить или заряжать током - превышающим допустимый для этих аккумуляторов, что намного продлевает срок их службы.

Всё начиналось как всегда.
Дело в том, что когда в батарее ноутбука выходит из строя хотя бы один аккумулятор, то контроллер её блокирует, и замена неисправного аккумулятора на новый - обычно не приводит к восстановлению работоспособности батареи. Батарею нужно разблокировать, но это не так просто. Нужно что-то типа программатора и программа, которая стоит не малых денег. Да и нет полной гарантии, что заменив один аккумулятор в батарее, через месяц-другой не выйдет из строя ещё какой нибудь, а они новые тоже стоят не малых денег.

И так, в следствии вышесказанного - появились в хозяйстве аккумуляторы от батарей ноутбуков разных ёмкостей и годов выпуска, и эти аккумуляторы стали перекочёвывать в фонарики и в другие устройства.
Ёмкость этих аккумуляторов в среднем 3 А/Ч, и во время их зарядки приходилось каждый раз контролировать процесс заряда, что порядком надоело. Лень подвигла к творчеству, и в связи с этим была разработана вот такая схема.

ЗУ это планировалось запитывать в основном от USB-разъёма компьютера или ноутбука, и в связи с этим на входе ЗУ был установлен разъём мини-USB и обычный разъём USB, для универсальности.

Потом два ЗУ были собраны в одном корпусе для одновременной зарядки двух Li-ion аккумуляторов, но как оказалось - одновременно заряжать два аккумулятора, позволяют себе не все устройства с USB выходом.
На этот случай в ЗУ был установлен ещё и обычный разъём, для подключения блока питания (зарядки от телефона) с выходным напряжением 5 Вольт и допустимым током 3А.

Как сказал выше, два ЗУ собрал в одном корпусе для заряда сразу двух аккумуляторов. В качестве выходного транзистора VT1 поставил МОСФЕТ с материнской платы.
Здесь можно применить любой подходящий МОСФЕТ, только с Р-каналом. На материнских платах очень много мощных МОСФЕТ-ов, но в основном они там с N-каналом, но на некоторых «материнках» попадаются один-два транзистора и с Р-каналом. У них у всех маленькое рабочее напряжение до 20 вольт обычно, но очень большие токи, за 20 ампер и это в SMD исполнении.

Теперь как это всё работает;
При подаче на ЗУ входного напряжения 5 Вольт - загорается зелёный светодиод, и при установки в ЗУ аккумулятора - начинается заряд, об этом говорит уже красный светодиод.
Открывается VT2, а он открывает VT1, (у МОСФЕТА очень маленькое сопротивление в открытом состоянии, сотые или тысячные доли Ом).

По достижении на аккумуляторе напряжения 4,1Вольта - открывается VD3, который закрывает VT2, а он в свою очередь позволяет закрыться VT1 (если быть совсем точным, то полностью всё не закрывается, происходит подпитка маленьким током и удержание 4,1В на аккумуляторе, это нормальный режим для литиевых аккумуляторов).
По окончании заряда аккумулятора, красный светодиод гаснет.

При указанных номиналах элементов R10 и R8 - оконечное напряжение заряда составляет 4,1 Вольт, что немного не соответствует полному заряду Li-ion аккумуляторов (4,2 Вольт), но значительно продлевает срок их службы.

Вместо TL431 можно поставить КА431, или любой другой 431-й так называемый «интегральный регулируемый стабилизатор напряжения» (они применяются практически в любом импульсном блоке питания).
Плата была сделана на два канала в SMD исполнении, хотя и не все установленные детали здесь SMD.
Вот так это выглядит уже в рабочем варианте.

Потерял в командировку родное зарядное устройство от цифрового фотоаппарата. Купить новое типа "лягушка". Жаба задавила, ведь я радиолюбитель и поэтому смогу сам спаять зарядку литиевых аккумуляторов своими руками, к тому же сделать это очень легко. Зарядное устройство абсолютно любого литиевого аккумулятора это источник постоянного напряжения на 5 вольт, отдающий ток заряда, равный 0.5-1.0 емкости батареи. Например, если емкость аккумулятора 1000 mAh , зарядное устройство должно выдавать ток не менее 500 mA.

Не верите, так попробуйте, а мы поможем.

Процесс заряда показан на графике. В первоночальный момент зарядный ток постоянен, при достижении уровня напряжения Umax на аккумуляторе, ЗУ переходит в режим, когда напряжение будет постоянным, а ток асимптотически стремится к нулю.


Зарядка литиевых аккумуляторов график процесса

Выходное напряжение литиевых аккумуляторов, обычно, составляет 4,2В, а номинальное напряжение составляет порядка 3,7В. Не рекомендуется заряжать эти батареи до полных 4,2В, так как это снижает их срок службы. Если снизить выходное напряжение до 4,1В, емкость упадет почти на 10%, но в тоже время количество циклов заряд-разряд возрастет почти в два раза. При эксплуатации этих батарей, крайне нежелательно доводить номинальное напряжение ниже уровня 3,4…3,3В.


Зарядка литиевых аккумуляторов схема на LM317

Как видим схема достаточно простая. Построена на стабилизаторах LM317 и TL431. Еще из радиокомпонентов присутствуют пару диодов, сопротивлений и конденсаторов. Устройство почти не требует регулировки, достаточно подстроечным сопротивлением R8 задаем напряжение на выходе устройства на номинале 4,2 вольта без подключенного аккумулятора. Сопротивлениями R4 и R6 устанавливаем зарядной ток. Для индикации работы конструкции предназначен светодиод "заряд", который при подключенной пустой батареи горит, а по мере зарядки он тухнет.

Приступаем к сборке конструкции для зарядки литиевых аккумуляторов. Находим подходящий корпус в нем можно разместить простой трансформаторный блок питания на пять вольт, и выше рассмотренную схему.

Для подключения заряжаемой батареи вырезал две латунные полоски и установил их на гнезда. Гайкой настраивается расстояние между контактами, которые подключаются к заряжаемой батареи.


Сделал, что-то вроде прищепки. Можно также установить переключатель, для смены полярности на гнездах зарядного устройства - в некоторых случаях это может сильно выручить. Печатную плату предлагаю изготовить по методу ЛУТ, рисунок в формате Sprint Layout забираем по ссылке выше.

При огромной массе положительных характеристик имеется у литиевых батарей и существенные недостатки, такие как высокая чувствительность к превышению напряжения заряда, что может повлечь за собой нагрев и интенсивное газообразование. А так как батарея имеет герметичную конструкцию, избыточное выделение газа привидеть к вздутию или взрыву. Кроме того литиевые батареи терпеть не могут перезаряд.

Благодаря использованию специализированных микросхем в фирменных зарядках, которые контролируют напряжение, такая проблема многим пользователям не знакома, но это не значит, что ее не существует. Поэтому для зарядки литиевых аккумуляторов нам нужно именно такое устройство, а схема рассмотренная выше является лишь его прототипом.


Зарядка литиевых аккумуляторов схема универсальная

Устройство позволяет заряжать литиевые батареи с напряжением 3,6В или 3,7В. На первом этапе заряд осуществляется стабильным током 245мА или 490мА (устанавливается вручную), при увеличении напряжения на батареи до уровня 4,1В или 4,2В заряд продолжается при поддержании стабильного напряжения и уменьшающемся значении зарядного тока, как только последний упадет до порогового значения (задается вручную от 20мА до 350мА) заряд батареи автоматически прекращается.

Стабилизатор LM317 поддерживает напряжение на сопротивлении R9 на уровне около 1,25В тем самым поддерживая стабильное значение тока идущего через него, а значит и через заряжаемый аккумулятор. Выходное напряжение ограничивается стабилизатором TL431, подключенного к управляющему входу LM317. Значение напряжения ограничения выбирается с помощью делителя на сопротивлениях R12…R14. Сопротивление R11 ограничивает ток питания TL431.

На операционном усилителе DA2.2 LM358, сопротивлениях R5…R8 и биполярном транзисторе VT2 построен преобразователь ток-напряжение. Напряжение на его выходе пропорционально току, протекающему через сопротивление R9 и вычисляется по формуле:

При значениях, на схеме коэффициент преобразования тока в напряжение равен 10, т.е. при токе через сопротивление R9 245мА напряжение на R5 равно 2,45В.

С R5 напряжение следует на неинвертирующий вход ОУ DA2.1. На инвертирующий вход компаратора поступает напряжение с регулируемого делителя на сопротивлениях R2…R4. Напряжение питания делителя стабилизируется LM78L05. Порог переключения компаратора устанавливается номиналом переменного сопротивления R3.

Зарядка литиевых аккумуляторов настройка схемы.

Вместо тумблера SB1 поставить перемычку и подав напряжение на схему, подбором сопротивлений R12…R14 сделать выходное напряжение 4,1В и 4,2В для разомкнутого и замкнутого состояния тумблера SA2.

Тумблером SA1 устанавливаем значение тока заряда (245мА или 490мА) . Тумблером SA2 выбираем максимальное значение напряжения, для аккумуляторов на 3,6В выбираем 4,1В, на 3,7В - 4,2В. Движком переменного сопротивления R3 задаем значение тока, при котором должен завершиться заряд батареи (ориентировочно 0,07…0,1С), подсоединяем аккумулятор и нажимаем тумблер SB1. Должен стартовать процесс заряда литиевой батареи и загорается индикатор на светодиоде VD2. При уменьшении тока заряда ниже порогового высокий уровень на выходе DA2.1 поменяется на низкий, полевой транзистор VT1 закрывается и катушка реле K1 отключается, разрывая своим фронтовым контактом K1 батарею от зарядного устройства.


Привожу рисунок печатной платы зарядного устройство и рекомендую ее изготовить своими руками по

Для возможности заряда литиевых аккумуляторов от мобильных телефонов и смартфонов был сделан универсальный адаптер:

Все аккумуляторы этого типа необходимо эксплуатировать в соответствии с определенными рекомендациями. Эти правила можно условно поделить на две группы: Не зависящие и зависящие от пользователя.

В первую группу попадают основополагающие правила заряда и разряда аккумуляторных батарей, которые контролируются специальным контроллером зарядного устройства:

Литиевый аккумулятор должен находиться в состоянии, при котором его напряжение не должно быть более 4.2 вольта и не опускаться ниже 2.7 вольта. Эти пределы являются уровнями максимального и минимального заряда. Минимальный уровень в 2,7 вольта актуален для батарей с электродами из кокса, однако современные литиевые аккумуляторы изготавливаются с электродами из графита. Для них минимальный предел равен 3 вольтам.
Количество энергии, отдаваемой батареей при изменении заряда от 100% до 0%, - это емкость аккумулятора . Ряд производителей ограничивает максимальное напряжение уровнем в 4.1 вольта, при этом литиевая батарея прослужит гораздо больше, но потеряет в емкости где-то на 10%. Иногда нижний предел повышается до 3.0 и даже 3.3 вольт, но также с снижением уровня емкости.
Наибольший срок эксплуатаии аккумуляторов бывает при 45% зхаряде, а при увеличении или уменьшении срок жизни сокращается. Если заряд находится в указанном выше диапазоне изменение срока эксплуатации не значительно.
Если напряжение на аккумуляторе выходит за пределы, указанные выше, даже на короткое время, срок его эксплуатации резко падает.
Контроллеры аккумуляторов зарядных устройств никогда не дают напряжению на аккумуляторе во время заряда стать выше 4.2 вольта, но могут по-разному ограничивать минимальный уровень при разряде.

Ко второй группе зависящих от пользователя входят следующие правила:

Старайтесь не разряжать аккумулятор до минимального уровня заряда и, тем более, до состояния, когда устройство само отключается, ну, а если это произошло, то желательно зарядить батарею как можно быстрее.
Не бойтесь частых подзарядок, в том числе и неполных литиевому аккумулятору это совершенно пофигу.
Емкость аккумулятора зависит от температуры. Так, при 100% уровне заряда при комнатной температуре, при выходе на мороз заряженность батареи упадет до 80%, что в принципе не опасно и не критично. Но может быть и наоборот если 100% заряженный аккумулятор положить на батарею, его уровень заряда увеличится до 110%, а это для него очень опасно и может резко сократить срок его жизни.
Идеальным условием для длительного хранения аккумулятора является нахождение вне девайса с зарядом около 50%
Если после приобретения батареи повышенной ёмкости через несколько дней эксплуатации. Устройство с батареей начинает глючить и виснуть или отключается зарядка аккумулятора, то скорей всего ваше зарядное устройство, которое отлично работало на старом аккумуляторе, просто не способно обеспечить необходимый ток зарядки для большой емкости.

Подборка оригинальных зарядок для телефонов состоящая только из простых и интересных радиолюбительских идей и разработок


Эта радиолюбительская конструкция предназначено для зарядки литиевых аккумуляторов от мобильных телефонов и типа 18650, а самое главное обеспечивает правильную зарядку аккумулятора. Устройство обладает светодиодным индикатором заряда. Красный цвет говорит о том, что батарея заряжается, зеленый - аккумулятор полностью заряжен. Умная зарядка получается благодоря применению специализированного контролера заряда на микросхеме BQ2057CSN.

В современных литиевых аккумуляторах чистый литий не используют. Поэтому получили распространены три основных разновидности литиевых аккумуляторов: Литий-ионные (Li-ion) Uном. - 3,6V; Литий-полимерные (Li-Po, Li-polymer или «липо»). Uном. - 3,7V; Литий-железо фосфатные (Li-Fe или LFP). Uном - 3,3V.

Недостатки

Основным недостатком Li-ion аккумуляторов, я бы выделил их пожароопасность из-за превышении напряжения или перегреве. Но, литий-железо-фосфатные аккумуляторы не имеют такого жирного минуса - они полностью пожаробезопасны.
Литиевые аккумуляторы очень чувствительны к холоду и быстро теряют свою ёмкость и перестают заряжаться.
Требуют обязательного наличия контроллера заряда
При глубоком разряде литиевые батареи теряют свои начальные свойства.
Если аккумулятор не будет "работать" продолжительное время, то сначала напряжение на нем упадет до порогового уровня, а затем начнётся глубокий разряди как только напряжение снизится до 2,5V, то это приведет к выходу его из строя. Поэтому время от времени подзаряжаем аккумуляторы ноутбуков, сотовых телефонов, mp3-плееров.



THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама